Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2({(x - 1)}^{\frac{1}{3}})(x - 2)(4x - 5)}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{8}{3}(x - 1)^{\frac{1}{3}}x^{2} - \frac{26}{3}(x - 1)^{\frac{1}{3}}x + \frac{20}{3}(x - 1)^{\frac{1}{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{8}{3}(x - 1)^{\frac{1}{3}}x^{2} - \frac{26}{3}(x - 1)^{\frac{1}{3}}x + \frac{20}{3}(x - 1)^{\frac{1}{3}}\right)}{dx}\\=&\frac{8}{3}(\frac{\frac{1}{3}(1 + 0)}{(x - 1)^{\frac{2}{3}}})x^{2} + \frac{8}{3}(x - 1)^{\frac{1}{3}}*2x - \frac{26}{3}(\frac{\frac{1}{3}(1 + 0)}{(x - 1)^{\frac{2}{3}}})x - \frac{26}{3}(x - 1)^{\frac{1}{3}} + \frac{20}{3}(\frac{\frac{1}{3}(1 + 0)}{(x - 1)^{\frac{2}{3}}})\\=&\frac{8x^{2}}{9(x - 1)^{\frac{2}{3}}} + \frac{16(x - 1)^{\frac{1}{3}}x}{3} - \frac{26x}{9(x - 1)^{\frac{2}{3}}} - \frac{26(x - 1)^{\frac{1}{3}}}{3} + \frac{20}{9(x - 1)^{\frac{2}{3}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return