There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}(x - {(tan(x))}^{3} - e^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - x^{2}tan^{3}(x) - x^{2}e^{x} + x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - x^{2}tan^{3}(x) - x^{2}e^{x} + x^{3}\right)}{dx}\\=& - 2xtan^{3}(x) - x^{2}*3tan^{2}(x)sec^{2}(x)(1) - 2xe^{x} - x^{2}e^{x} + 3x^{2}\\=& - 3x^{2}tan^{2}(x)sec^{2}(x) - 2xtan^{3}(x) - 2xe^{x} - x^{2}e^{x} + 3x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !