There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - sin(x))}{(1 + cos(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{sin(x)}{(cos(x) + 1)} + \frac{1}{(cos(x) + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{sin(x)}{(cos(x) + 1)} + \frac{1}{(cos(x) + 1)}\right)}{dx}\\=& - (\frac{-(-sin(x) + 0)}{(cos(x) + 1)^{2}})sin(x) - \frac{cos(x)}{(cos(x) + 1)} + (\frac{-(-sin(x) + 0)}{(cos(x) + 1)^{2}})\\=& - \frac{sin^{2}(x)}{(cos(x) + 1)^{2}} - \frac{cos(x)}{(cos(x) + 1)} + \frac{sin(x)}{(cos(x) + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !