There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(e^{x} - (e^{-x}))}{(e^{x} + (e^{-x}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{x}}{(e^{x} + e^{-x})} - \frac{e^{-x}}{(e^{x} + e^{-x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{x}}{(e^{x} + e^{-x})} - \frac{e^{-x}}{(e^{x} + e^{-x})}\right)}{dx}\\=&(\frac{-(e^{x} + e^{-x}*-1)}{(e^{x} + e^{-x})^{2}})e^{x} + \frac{e^{x}}{(e^{x} + e^{-x})} - (\frac{-(e^{x} + e^{-x}*-1)}{(e^{x} + e^{-x})^{2}})e^{-x} - \frac{e^{-x}*-1}{(e^{x} + e^{-x})}\\=&\frac{e^{-x}e^{x}}{(e^{x} + e^{-x})^{2}} + \frac{e^{x}e^{-x}}{(e^{x} + e^{-x})^{2}} + \frac{e^{x}}{(e^{x} + e^{-x})} - \frac{e^{{x}*{2}}}{(e^{x} + e^{-x})^{2}} - \frac{e^{{-x}*{2}}}{(e^{x} + e^{-x})^{2}} + \frac{e^{-x}}{(e^{x} + e^{-x})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !