Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{3} - \frac{1}{({x}^{2})} + 3ln(sqrt(x)) - tan(\frac{π}{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3} - \frac{1}{x^{2}} + 3ln(sqrt(x)) - tan(\frac{1}{3}π)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3} - \frac{1}{x^{2}} + 3ln(sqrt(x)) - tan(\frac{1}{3}π)\right)}{dx}\\=&3x^{2} - \frac{-2}{x^{3}} + \frac{3*\frac{1}{2}}{(sqrt(x))(x)^{\frac{1}{2}}} - sec^{2}(\frac{1}{3}π)(0)\\=&\frac{3}{2x^{\frac{1}{2}}sqrt(x)} + \frac{2}{x^{3}} + 3x^{2}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return