There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{x(ax + b)}{({e}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{2}{e}^{(-x)} + bx{e}^{(-x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{2}{e}^{(-x)} + bx{e}^{(-x)}\right)}{dx}\\=&a*2x{e}^{(-x)} + ax^{2}({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})) + b{e}^{(-x)} + bx({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))\\=&2ax{e}^{(-x)} - ax^{2}{e}^{(-x)} + b{e}^{(-x)} - bx{e}^{(-x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2ax{e}^{(-x)} - ax^{2}{e}^{(-x)} + b{e}^{(-x)} - bx{e}^{(-x)}\right)}{dx}\\=&2a{e}^{(-x)} + 2ax({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})) - a*2x{e}^{(-x)} - ax^{2}({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})) + b({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})) - b{e}^{(-x)} - bx({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))\\=&2a{e}^{(-x)} - 4ax{e}^{(-x)} + ax^{2}{e}^{(-x)} - 2b{e}^{(-x)} + bx{e}^{(-x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !