Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of T is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(2 + 2{e}^{(\frac{\frac{-896}{5}}{T})})\ with\ respect\ to\ T:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)\right)}{dT}\\=&\frac{(2({e}^{(\frac{\frac{-896}{5}}{T})}((\frac{\frac{-896}{5}*-1}{T^{2}})ln(e) + \frac{(\frac{\frac{-896}{5}}{T})(0)}{(e)})) + 0)}{(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)}\\=&\frac{1792{e}^{(\frac{\frac{-896}{5}}{T})}}{5(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1792{e}^{(\frac{\frac{-896}{5}}{T})}}{5(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{2}}\right)}{dT}\\=&\frac{1792(\frac{-(2({e}^{(\frac{\frac{-896}{5}}{T})}((\frac{\frac{-896}{5}*-1}{T^{2}})ln(e) + \frac{(\frac{\frac{-896}{5}}{T})(0)}{(e)})) + 0)}{(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)^{2}}){e}^{(\frac{\frac{-896}{5}}{T})}}{5T^{2}} + \frac{1792*-2{e}^{(\frac{\frac{-896}{5}}{T})}}{5(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{3}} + \frac{1792({e}^{(\frac{\frac{-896}{5}}{T})}((\frac{\frac{-896}{5}*-1}{T^{2}})ln(e) + \frac{(\frac{\frac{-896}{5}}{T})(0)}{(e)}))}{5(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{2}}\\=&\frac{-3211264{e}^{(\frac{\frac{-1792}{5}}{T})}}{25(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)^{2}T^{4}} - \frac{3584{e}^{(\frac{\frac{-896}{5}}{T})}}{5(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{3}} + \frac{1605632{e}^{(\frac{\frac{-896}{5}}{T})}}{25(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{4}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return