数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 T 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数ln(2 + 2{e}^{(\frac{\frac{-896}{5}}{T})}) 关于 T 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)\right)}{dT}\\=&\frac{(2({e}^{(\frac{\frac{-896}{5}}{T})}((\frac{\frac{-896}{5}*-1}{T^{2}})ln(e) + \frac{(\frac{\frac{-896}{5}}{T})(0)}{(e)})) + 0)}{(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)}\\=&\frac{1792{e}^{(\frac{\frac{-896}{5}}{T})}}{5(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1792{e}^{(\frac{\frac{-896}{5}}{T})}}{5(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{2}}\right)}{dT}\\=&\frac{1792(\frac{-(2({e}^{(\frac{\frac{-896}{5}}{T})}((\frac{\frac{-896}{5}*-1}{T^{2}})ln(e) + \frac{(\frac{\frac{-896}{5}}{T})(0)}{(e)})) + 0)}{(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)^{2}}){e}^{(\frac{\frac{-896}{5}}{T})}}{5T^{2}} + \frac{1792*-2{e}^{(\frac{\frac{-896}{5}}{T})}}{5(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{3}} + \frac{1792({e}^{(\frac{\frac{-896}{5}}{T})}((\frac{\frac{-896}{5}*-1}{T^{2}})ln(e) + \frac{(\frac{\frac{-896}{5}}{T})(0)}{(e)}))}{5(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{2}}\\=&\frac{-3211264{e}^{(\frac{\frac{-1792}{5}}{T})}}{25(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)^{2}T^{4}} - \frac{3584{e}^{(\frac{\frac{-896}{5}}{T})}}{5(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{3}} + \frac{1605632{e}^{(\frac{\frac{-896}{5}}{T})}}{25(2{e}^{(\frac{\frac{-896}{5}}{T})} + 2)T^{4}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回