There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(6x + 2)}{(3{x}^{2} + 5)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6x}{(3x^{2} + 5)} + \frac{2}{(3x^{2} + 5)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6x}{(3x^{2} + 5)} + \frac{2}{(3x^{2} + 5)}\right)}{dx}\\=&6(\frac{-(3*2x + 0)}{(3x^{2} + 5)^{2}})x + \frac{6}{(3x^{2} + 5)} + 2(\frac{-(3*2x + 0)}{(3x^{2} + 5)^{2}})\\=&\frac{-36x^{2}}{(3x^{2} + 5)^{2}} - \frac{12x}{(3x^{2} + 5)^{2}} + \frac{6}{(3x^{2} + 5)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !