There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ sin(x + \frac{π}{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x + \frac{1}{3}π)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x + \frac{1}{3}π)\right)}{dx}\\=&cos(x + \frac{1}{3}π)(1 + 0)\\=&cos(x + \frac{1}{3}π)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos(x + \frac{1}{3}π)\right)}{dx}\\=&-sin(x + \frac{1}{3}π)(1 + 0)\\=&-sin(x + \frac{1}{3}π)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -sin(x + \frac{1}{3}π)\right)}{dx}\\=&-cos(x + \frac{1}{3}π)(1 + 0)\\=&-cos(x + \frac{1}{3}π)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -cos(x + \frac{1}{3}π)\right)}{dx}\\=&--sin(x + \frac{1}{3}π)(1 + 0)\\=&sin(x + \frac{1}{3}π)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !