There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2} + 1)(x - 1)(3 - {x}^{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - x^{6} + 4x^{3} - 3x^{2} + x^{5} + 3x - x^{4} - 3\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - x^{6} + 4x^{3} - 3x^{2} + x^{5} + 3x - x^{4} - 3\right)}{dx}\\=& - 6x^{5} + 4*3x^{2} - 3*2x + 5x^{4} + 3 - 4x^{3} + 0\\=& - 6x^{5} + 12x^{2} - 6x + 5x^{4} - 4x^{3} + 3\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !