Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ 2xcos(c)x + sin({\frac{1}{x}}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{2}cos(c) + sin(\frac{1}{x^{2}})\\\\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=& - \frac{20922789888000cos(\frac{1}{x^{2}})}{x^{17}} + \frac{512608352256000sin(\frac{1}{x^{2}})}{x^{19}} + \frac{2855960819712000cos(\frac{1}{x^{2}})}{x^{21}} - \frac{6176581931520000sin(\frac{1}{x^{2}})}{x^{23}} - \frac{6557376707481600cos(\frac{1}{x^{2}})}{x^{25}} + \frac{3889168867584000sin(\frac{1}{x^{2}})}{x^{27}} + \frac{1394126173440000cos(\frac{1}{x^{2}})}{x^{29}} - \frac{317353369132800sin(\frac{1}{x^{2}})}{x^{31}} - \frac{47262741926400cos(\frac{1}{x^{2}})}{x^{33}} + \frac{4671141995520sin(\frac{1}{x^{2}})}{x^{35}} + \frac{306184919040cos(\frac{1}{x^{2}})}{x^{37}} - \frac{13066260480sin(\frac{1}{x^{2}})}{x^{39}} - \frac{346644480cos(\frac{1}{x^{2}})}{x^{41}} + \frac{5160960sin(\frac{1}{x^{2}})}{x^{43}} + \frac{32768cos(\frac{1}{x^{2}})}{x^{45}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return