数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 15 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数2xcos(c)x + sin({\frac{1}{x}}^{2}) 关于 x 的 15 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2x^{2}cos(c) + sin(\frac{1}{x^{2}})\\\\ &\color{blue}{函数的 15 阶导数:} \\=& - \frac{20922789888000cos(\frac{1}{x^{2}})}{x^{17}} + \frac{512608352256000sin(\frac{1}{x^{2}})}{x^{19}} + \frac{2855960819712000cos(\frac{1}{x^{2}})}{x^{21}} - \frac{6176581931520000sin(\frac{1}{x^{2}})}{x^{23}} - \frac{6557376707481600cos(\frac{1}{x^{2}})}{x^{25}} + \frac{3889168867584000sin(\frac{1}{x^{2}})}{x^{27}} + \frac{1394126173440000cos(\frac{1}{x^{2}})}{x^{29}} - \frac{317353369132800sin(\frac{1}{x^{2}})}{x^{31}} - \frac{47262741926400cos(\frac{1}{x^{2}})}{x^{33}} + \frac{4671141995520sin(\frac{1}{x^{2}})}{x^{35}} + \frac{306184919040cos(\frac{1}{x^{2}})}{x^{37}} - \frac{13066260480sin(\frac{1}{x^{2}})}{x^{39}} - \frac{346644480cos(\frac{1}{x^{2}})}{x^{41}} + \frac{5160960sin(\frac{1}{x^{2}})}{x^{43}} + \frac{32768cos(\frac{1}{x^{2}})}{x^{45}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回