Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of s is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(s + 1)}{(ssss + 7sss + 20ss + 32s + 24)}\ with\ respect\ to\ s:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{s}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)} + \frac{1}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{s}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)} + \frac{1}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)}\right)}{ds}\\=&(\frac{-(4s^{3} + 7*3s^{2} + 20*2s + 32 + 0)}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)^{2}})s + \frac{1}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)} + (\frac{-(4s^{3} + 7*3s^{2} + 20*2s + 32 + 0)}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)^{2}})\\=&\frac{-4s^{4}}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)^{2}} - \frac{25s^{3}}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)^{2}} - \frac{61s^{2}}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)^{2}} - \frac{72s}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)^{2}} + \frac{1}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)} - \frac{32}{(s^{4} + 7s^{3} + 20s^{2} + 32s + 24)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return