Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (3bb - 8ac)(3bbbb - 16(abbc - aacc - aabd + 4aaaf)) - 9(bbb - 4abc + 8aad)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 128ba^{3}cd + 176b^{2}a^{2}c^{2} + 48b^{3}a^{2}d - 192b^{2}a^{3}f - 72b^{4}ac + 512a^{4}cf + 36bac - 128a^{3}c^{3} - 9b^{3} + 9b^{6} - 72a^{2}d\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 128ba^{3}cd + 176b^{2}a^{2}c^{2} + 48b^{3}a^{2}d - 192b^{2}a^{3}f - 72b^{4}ac + 512a^{4}cf + 36bac - 128a^{3}c^{3} - 9b^{3} + 9b^{6} - 72a^{2}d\right)}{dx}\\=& - 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return