Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{5} - 2{x}^{4} + {x}^{3} - 3{x}^{2} + 5x - 6\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} - 2x^{4} + x^{3} - 3x^{2} + 5x - 6\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} - 2x^{4} + x^{3} - 3x^{2} + 5x - 6\right)}{dx}\\=&5x^{4} - 2*4x^{3} + 3x^{2} - 3*2x + 5 + 0\\=&5x^{4} - 8x^{3} + 3x^{2} - 6x + 5\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5x^{4} - 8x^{3} + 3x^{2} - 6x + 5\right)}{dx}\\=&5*4x^{3} - 8*3x^{2} + 3*2x - 6 + 0\\=&20x^{3} - 24x^{2} + 6x - 6\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 20x^{3} - 24x^{2} + 6x - 6\right)}{dx}\\=&20*3x^{2} - 24*2x + 6 + 0\\=&60x^{2} - 48x + 6\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 60x^{2} - 48x + 6\right)}{dx}\\=&60*2x - 48 + 0\\=&120x - 48\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return