Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of o is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(asin(2)o + 2zcos(2)o)}{(b - acos(2)o + zsin(2)o)}\ with\ respect\ to\ o:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{aosin(2)}{(b - aocos(2) + zosin(2))} + \frac{2zocos(2)}{(b - aocos(2) + zosin(2))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{aosin(2)}{(b - aocos(2) + zosin(2))} + \frac{2zocos(2)}{(b - aocos(2) + zosin(2))}\right)}{do}\\=&(\frac{-(0 - acos(2) - ao*-sin(2)*0 + zsin(2) + zocos(2)*0)}{(b - aocos(2) + zosin(2))^{2}})aosin(2) + \frac{asin(2)}{(b - aocos(2) + zosin(2))} + \frac{aocos(2)*0}{(b - aocos(2) + zosin(2))} + 2(\frac{-(0 - acos(2) - ao*-sin(2)*0 + zsin(2) + zocos(2)*0)}{(b - aocos(2) + zosin(2))^{2}})zocos(2) + \frac{2zcos(2)}{(b - aocos(2) + zosin(2))} + \frac{2zo*-sin(2)*0}{(b - aocos(2) + zosin(2))}\\=&\frac{a^{2}osin(2)cos(2)}{(b - aocos(2) + zosin(2))^{2}} - \frac{azosin^{2}(2)}{(b - aocos(2) + zosin(2))^{2}} + \frac{asin(2)}{(b - aocos(2) + zosin(2))} + \frac{2azocos^{2}(2)}{(b - aocos(2) + zosin(2))^{2}} - \frac{2z^{2}osin(2)cos(2)}{(b - aocos(2) + zosin(2))^{2}} + \frac{2zcos(2)}{(b - aocos(2) + zosin(2))}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return