数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 o 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(asin(2)o + 2zcos(2)o)}{(b - acos(2)o + zsin(2)o)} 关于 o 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{aosin(2)}{(b - aocos(2) + zosin(2))} + \frac{2zocos(2)}{(b - aocos(2) + zosin(2))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{aosin(2)}{(b - aocos(2) + zosin(2))} + \frac{2zocos(2)}{(b - aocos(2) + zosin(2))}\right)}{do}\\=&(\frac{-(0 - acos(2) - ao*-sin(2)*0 + zsin(2) + zocos(2)*0)}{(b - aocos(2) + zosin(2))^{2}})aosin(2) + \frac{asin(2)}{(b - aocos(2) + zosin(2))} + \frac{aocos(2)*0}{(b - aocos(2) + zosin(2))} + 2(\frac{-(0 - acos(2) - ao*-sin(2)*0 + zsin(2) + zocos(2)*0)}{(b - aocos(2) + zosin(2))^{2}})zocos(2) + \frac{2zcos(2)}{(b - aocos(2) + zosin(2))} + \frac{2zo*-sin(2)*0}{(b - aocos(2) + zosin(2))}\\=&\frac{a^{2}osin(2)cos(2)}{(b - aocos(2) + zosin(2))^{2}} - \frac{azosin^{2}(2)}{(b - aocos(2) + zosin(2))^{2}} + \frac{asin(2)}{(b - aocos(2) + zosin(2))} + \frac{2azocos^{2}(2)}{(b - aocos(2) + zosin(2))^{2}} - \frac{2z^{2}osin(2)cos(2)}{(b - aocos(2) + zosin(2))^{2}} + \frac{2zcos(2)}{(b - aocos(2) + zosin(2))}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回