| 1 | − | 1 | ÷ | ( | x | + | 2 | ) | + | 1 | − | 1 | ÷ | ( | x | + | 9 | ) | = | 1 | − | 1 | ÷ | ( | x | + | 3 | ) | + | 1 | − | 1 | ÷ | ( | x | + | 8 | ) |
| 方程两边同时乘以: | ( | x | + | 2 | ) | , | ( | x | + | 3 | ) |
| 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 | ( | x | + | 3 | ) | + | 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 | ÷ | ( | x | + | 9 | ) | × | ( | x | + | 2 | ) | ( | x | + | 3 | ) | = | 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 | ( | x | + | 2 | ) | + | 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 | ÷ | ( | x | + | 8 | ) | × | ( | x | + | 2 | ) | ( | x | + | 3 | ) |
| 1 | x | ( | x | + | 3 | ) | + | 1 | × | 2 | ( | x | + | 3 | ) | − | 1 | ( | x | + | 3 | ) | + | 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 | = | 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 | ( | x | + | 2 | ) | + | 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 | ÷ | ( | x | + | 8 | ) | × | ( | x | + | 2 | ) | ( | x | + | 3 | ) |
| 1 | x | ( | x | + | 3 | ) | + | 1 | × | 2 | ( | x | + | 3 | ) | − | 1 | ( | x | + | 3 | ) | + | 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 | = | 1 | x | ( | x | + | 3 | ) | + | 1 | × | 2 | ( | x | + | 3 | ) | − | 1 | ( | x | + | 2 | ) | + | 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 |
| 1 | x | ( | x | + | 3 | ) | + | 2 | ( | x | + | 3 | ) | − | 1 | ( | x | + | 3 | ) | + | 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 | ÷ | ( | x | + | 9 | ) | = | 1 | x | ( | x | + | 3 | ) | + | 2 | ( | x | + | 3 | ) | − | 1 | ( | x | + | 2 | ) | + | 1 | ( | x | + | 2 | ) | ( | x | + | 3 | ) | − | 1 | ÷ | ( | x | + | 8 | ) |
| 方程两边同时乘以: | ( | x | + | 9 | ) | , | ( | x | + | 8 | ) |
| 1 | x | ( | x | + | 3 | ) | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 2 | ( | x | + | 3 | ) | ( | x | + | 9 | ) | ( | x | + | 8 | ) | − | 1 | ( | x | + | 3 | ) | ( | x | + | 9 | ) | = | 1 | x | ( | x | + | 3 | ) | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 2 | ( | x | + | 3 | ) | ( | x | + | 9 | ) | ( | x | + | 8 | ) | − | 1 | ( | x | + | 2 | ) | ( | x | + | 9 | ) |
| 1 | x | x | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 1 | x | × | 3 | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 2 | ( | x | + | 3 | ) | = | 1 | x | ( | x | + | 3 | ) | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 2 | ( | x | + | 3 | ) | ( | x | + | 9 | ) | ( | x | + | 8 | ) | − | 1 | ( | x | + | 2 | ) | ( | x | + | 9 | ) |
| 1 | x | x | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 1 | x | × | 3 | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 2 | ( | x | + | 3 | ) | = | 1 | x | x | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 1 | x | × | 3 | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 2 | ( | x | + | 3 | ) |
| 1 | x | x | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 3 | x | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 2 | ( | x | + | 3 | ) | ( | x | + | 9 | ) | = | 1 | x | x | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 3 | x | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 2 | ( | x | + | 3 | ) | ( | x | + | 9 | ) |
| 1 | x | x | x | ( | x | + | 8 | ) | + | 1 | x | x | × | 9 | ( | x | + | 8 | ) | + | 3 | x | = | 1 | x | x | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 3 | x | ( | x | + | 9 | ) | ( | x | + | 8 | ) | + | 2 | ( | x | + | 3 | ) | ( | x | + | 9 | ) |
| 1 | x | x | x | ( | x | + | 8 | ) | + | 1 | x | x | × | 9 | ( | x | + | 8 | ) | + | 3 | x | = | 1 | x | x | x | ( | x | + | 8 | ) | + | 1 | x | x | × | 9 | ( | x | + | 8 | ) | + | 3 | x |
| 1 | x | x | x | ( | x | + | 8 | ) | + | 9 | x | x | ( | x | + | 8 | ) | + | 3 | x | ( | x | + | 9 | ) | = | 1 | x | x | x | ( | x | + | 8 | ) | + | 9 | x | x | ( | x | + | 8 | ) | + | 3 | x | ( | x | + | 9 | ) |
| 1 | x | x | x | x | + | 1 | x | x | x | × | 8 | + | 9 | x | = | 1 | x | x | x | ( | x | + | 8 | ) | + | 9 | x | x | ( | x | + | 8 | ) | + | 3 | x | ( | x | + | 9 | ) |
| 1 | x | x | x | x | + | 1 | x | x | x | × | 8 | + | 9 | x | = | 1 | x | x | x | x | + | 1 | x | x | x | × | 8 | + | 9 | x |
| 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x | = | 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x |
| 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x | = | 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x |
| 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x | = | 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x |
| 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x | = | 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x |
| 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x | = | 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x |
| 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x | = | 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x |
| 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x | = | 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x |
| 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x | = | 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x |
| 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x | = | 1 | x | x | x | x | + | 8 | x | x | x | + | 9 | x | x |
| x1= | - | 11 2 |