总述:本次共解1题。其中
☆方程1题
〖 1/1方程〗
作业:求方程 82560000+6000(1-t)*2000(1+3t) = 12000(1+t)*[10000-2000(1+3t)] 的解.
题型:方程
解:原方程:| | 82560000 | + | 6000 | ( | 1 | − | t | ) | × | 2000 | ( | 1 | + | 3 | t | ) | = | 12000 | ( | 1 | + | t | ) | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) |
| 方程左边 = | 82560000 | + | 12000000 | ( | 1 | − | t | ) | ( | 1 | + | 3 | t | ) |
方程化为:
| | 82560000 | + | 12000000 | ( | 1 | − | t | ) | ( | 1 | + | 3 | t | ) | = | 12000 | ( | 1 | + | t | ) | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) |
去掉方程左边的括号:
| 方程左边 = | 82560000 | + | 12000000 | × | 1 | ( | 1 | + | 3 | t | ) | − | 12000000 | t | ( | 1 | + | 3 | t | ) |
| = | 82560000 | + | 12000000 | ( | 1 | + | 3 | t | ) | − | 12000000 | t | ( | 1 | + | 3 | t | ) |
| = | 82560000 | + | 12000000 | × | 1 | + | 12000000 | × | 3 | t | − | 12000000 | t | ( | 1 | + | 3 | t | ) |
| = | 82560000 | + | 12000000 | + | 36000000 | t | − | 12000000 | t | ( | 1 | + | 3 | t | ) |
| = | 94560000 | + | 36000000 | t | − | 12000000 | t | ( | 1 | + | 3 | t | ) |
| = | 94560000 | + | 36000000 | t | − | 12000000 | t | × | 1 | − | 12000000 | t | × | 3 | t |
| = | 94560000 | + | 36000000 | t | − | 12000000 | t | − | 36000000 | t | t |
| = | 94560000 | + | 24000000 | t | − | 36000000 | t | t |
方程化为:
| | 94560000 | + | 24000000 | t | − | 36000000 | t | t | = | 12000 | ( | 1 | + | t | ) | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) |
去掉方程右边的括号:
| 方程右边 = | 12000 | × | 1 | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) | + | 12000 | t | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) |
| = | 12000 | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) | + | 12000 | t | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) |
| = | 12000 | × | 10000 | − | 12000 | × | 2000 | ( | 1 | + | 3 | t | ) | + | 12000 | t | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) |
| = | 120000000 | − | 24000000 | ( | 1 | + | 3 | t | ) | + | 12000 | t | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) |
| = | 120000000 | − | 24000000 | × | 1 | − | 24000000 | × | 3 | t | + | 12000 | t | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) |
| = | 120000000 | − | 24000000 | − | 72000000 | t | + | 12000 | t | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) |
| = | 96000000 | − | 72000000 | t | + | 12000 | t | ( | 10000 | − | 2000 | ( | 1 | + | 3 | t | ) | ) |
| = | 96000000 | − | 72000000 | t | + | 12000 | t | × | 10000 | − | 12000 | t | × | 2000 | ( | 1 | + | 3 | t | ) |
| = | 96000000 | − | 72000000 | t | + | 120000000 | t | − | 24000000 | t | ( | 1 | + | 3 | t | ) |
| = | 96000000 | + | 48000000 | t | − | 24000000 | t | ( | 1 | + | 3 | t | ) |
| = | 96000000 | + | 48000000 | t | − | 24000000 | t | × | 1 | − | 24000000 | t | × | 3 | t |
| = | 96000000 | + | 48000000 | t | − | 24000000 | t | − | 72000000 | t | t |
| = | 96000000 | + | 24000000 | t | − | 72000000 | t | t |
方程化为:
| | 94560000 | + | 24000000 | t | − | 36000000 | t | t | = | 96000000 | + | 24000000 | t | − | 72000000 | t | t |
方程可以化为:
| | 94560000 | + | 24000000 | t | − | 36000000 | t | t | = | 96000000 | + | 24000000 | t | − | 72000000 | t | t |
方程化为一般式后,用因式分解法化为:
( 5t + 1 )( 5t - 1 )=0
由
5t + 1 = 0
5t - 1 = 0
得:
有 2个解。
解一元二次方程的详细方法请参阅:《一元二次方程的解法》
你的问题在这里没有得到解决?请到 热门难题 里面看看吧!