| ( | 360 | ÷ | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | − | 750 | = | 0 |
| 360 | ÷ | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | − | 750 | = | 0 |
| 方程两边同时乘以: | ( | 1 | + | ( | x | ÷ | 100 | ) | ) |
| 360 | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | − | 750 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | = | 0 |
| 360 | + | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | − | 750 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | = | 0 |
| 方程两边同时乘以: | ( | 1 | + | ( | x | ÷ | 25 | ) | ) |
| 360 | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | = | 0 |
| 360 | × | 1 | + | 360 | ( | x | ÷ | 25 | ) | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | = | 0 |
| 360 | + | 360 | ( | x | ÷ | 25 | ) | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | = | 0 |
| 360 | + | 360 | x | ÷ | 25 | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | = | 0 |
| 360 | + | 72 5 | x | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | = | 0 |
| 360 | + | 72 5 | x | + | 300 | × | 1 | + | 300 | ( | x | ÷ | 100 | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | = | 0 |
| 360 | + | 72 5 | x | + | 300 | + | 300 | ( | x | ÷ | 100 | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | = | 0 |
| 660 | + | 72 5 | x | + | 300 | ( | x | ÷ | 100 | ) | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | = | 0 |
| 660 | + | 72 5 | x | + | 300 | x | ÷ | 100 | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | = | 0 |
| 660 | + | 72 5 | x | + | 3 | x | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | = | 0 |
| 660 | + | 87 5 | x | + | ( | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | = | 0 |
| 660 | + | 87 5 | x | + | 300 | ÷ | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 160 | ÷ | ( | 1 | + | ( | x | ÷ | 35 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | = | 0 |
| 方程两边同时乘以: | ( | 1 | + | ( | x | ÷ | 40 | ) | ) |
| 660 | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | + | 87 5 | x | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | = | 0 |
| 660 | × | 1 | + | 660 | ( | x | ÷ | 40 | ) | + | 87 5 | x | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | = | 0 |
| 660 | + | 660 | ( | x | ÷ | 40 | ) | + | 87 5 | x | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | = | 0 |
| 660 | + | 660 | x | ÷ | 40 | + | 87 5 | x | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | = | 0 |
| 660 | + | 33 2 | x | + | 87 5 | x | ( | 1 | + | ( | x | ÷ | 40 | ) | ) | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | = | 0 |
| 660 | + | 33 2 | x | + | 87 5 | x | × | 1 | + | 87 5 | x | ( | x | ÷ | 40 | ) | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | = | 0 |
| 660 | + | 33 2 | x | + | 87 5 | x | + | 87 5 | x | ( | x | ÷ | 40 | ) | + | 300 | ( | 1 | + | ( | x | ÷ | 100 | ) | ) | ( | 1 | + | ( | x | ÷ | 25 | ) | ) | + | ( | 240 | ÷ | ( | 1 | + | ( | x | ÷ | 65 | ) | ) | ) | = | 0 |