| 1 | = | 1 | ÷ | ( | 7523 | + | ( | 83762 | − | x | ) | ) | + | ( | 7523 | + | ( | 83762 | − | x | ) | ) | ÷ | 91285 |
| 方程两边同时乘以: | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 1 | ( | 7523 | + | ( | 83762 | − | x | ) | ) | = | 1 | + | ( | 7523 | + | ( | 83762 | − | x | ) | ) | ÷ | 91285 | × | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 1 | × | 7523 | + | 1 | ( | 83762 | − | x | ) | = | 1 | + | ( | 7523 | + | ( | 83762 | − | x | ) | ) | ÷ | 91285 | × | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 1 | × | 7523 | + | 1 | ( | 83762 | − | x | ) | = | 1 | + | 7523 | ÷ | 91285 | × | ( | 7523 | + | ( | 83762 | − | x | ) | ) | + | ( | 83762 | − | x | ) | ÷ | 91285 | × | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 7523 | + | 1 | ( | 83762 | − | x | ) | = | 1 | + | 7523 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) | + | ( | 83762 | − | x | ) | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 7523 | + | 1 | × | 83762 | − | 1 | x | = | 1 | + | 7523 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) | + | ( | 83762 | − | x | ) | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 7523 | + | 1 | × | 83762 | − | 1 | x | = | 1 | + | 7523 91285 | × | 7523 | + | 7523 91285 | ( | 83762 | − | x | ) | + | ( | 83762 | − | x | ) | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 7523 | + | 83762 | − | 1 | x | = | 1 | + | 56595529 91285 | + | 7523 91285 | ( | 83762 | − | x | ) | + | ( | 83762 | − | x | ) | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 91285 | − | 1 | x | = | 56686814 91285 | + | 7523 91285 | ( | 83762 | − | x | ) | + | ( | 83762 | − | x | ) | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 91285 | − | 1 | x | = | 56686814 91285 | + | 7523 91285 | × | 83762 | − | 7523 91285 | x | + | ( | 83762 | − | x | ) | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 91285 | − | 1 | x | = | 56686814 91285 | + | 630141526 91285 | − | 7523 91285 | x | + | ( | 83762 | − | x | ) | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 91285 | − | 1 | x | = | 137365668 18257 | − | 7523 91285 | x | + | ( | 83762 | − | x | ) | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 91285 | − | 1 | x | = | 137365668 18257 | − | 7523 91285 | x | + | 83762 | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) | − | x | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 91285 | − | 1 | x | = | 137365668 18257 | − | 7523 91285 | x | + | 83762 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) | − | x | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 91285 | − | 1 | x | = | 137365668 18257 | − | 7523 91285 | x | + | 83762 91285 | × | 7523 | + | 83762 91285 | ( | 83762 | − | x | ) | − | x | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |
| 91285 | − | 1 | x | = | 137365668 18257 | − | 7523 91285 | x | + | 630141526 91285 | + | 83762 91285 | ( | 83762 | − | x | ) | − | x | × | 1 91285 | ( | 7523 | + | ( | 83762 | − | x | ) | ) |