| 1 | ÷ | x | + | 1 | ÷ | ( | 2 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | = | 1 | ÷ | ( | 7 | + | x | ) |
| 方程两边同时乘以: | x | , | ( | 7 | + | x | ) |
| 1 | ( | 7 | + | x | ) | + | 1 | ÷ | ( | 2 | + | x | ) | × | x | ( | 7 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | × | x | ( | 7 | + | x | ) | = | 1 | x |
| 1 | × | 7 | + | 1 | x | + | 1 | ÷ | ( | 2 | + | x | ) | × | x | ( | 7 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | × | x | ( | 7 | + | x | ) | = | 1 | x |
| 7 | + | 1 | x | + | 1 | ÷ | ( | 2 | + | x | ) | × | x | ( | 7 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | × | x | ( | 7 | + | x | ) | = | 1 | x |
| 方程两边同时乘以: | ( | 2 | + | x | ) |
| 7 | ( | 2 | + | x | ) | + | 1 | x | ( | 2 | + | x | ) | + | 1 | x | ( | 7 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | × | x | ( | 7 | + | x | ) | = | 1 | x | ( | 2 | + | x | ) |
| 7 | × | 2 | + | 7 | x | + | 1 | x | ( | 2 | + | x | ) | + | 1 | x | ( | 7 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | = | 1 | x | ( | 2 | + | x | ) |
| 7 | × | 2 | + | 7 | x | + | 1 | x | ( | 2 | + | x | ) | + | 1 | x | ( | 7 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | = | 1 | x | × | 2 | + | 1 | x | x |
| 14 | + | 7 | x | + | 1 | x | ( | 2 | + | x | ) | + | 1 | x | ( | 7 | + | x | ) | + | 1 | ÷ | ( | 3 | + | x | ) | × | x | = | 2 | x | + | 1 | x | x |
| 方程两边同时乘以: | ( | 3 | + | x | ) |
| 14 | ( | 3 | + | x | ) | + | 7 | x | ( | 3 | + | x | ) | + | 1 | x | ( | 2 | + | x | ) | ( | 3 | + | x | ) | + | 1 | x | ( | 7 | + | x | ) | = | 2 | x | ( | 3 | + | x | ) | + | 1 | x | x | ( | 3 | + | x | ) |
| 14 | × | 3 | + | 14 | x | + | 7 | x | ( | 3 | + | x | ) | + | 1 | x | ( | 2 | + | x | ) | ( | 3 | + | x | ) | + | 1 | = | 2 | x | ( | 3 | + | x | ) | + | 1 | x | x | ( | 3 | + | x | ) |
| 14 | × | 3 | + | 14 | x | + | 7 | x | ( | 3 | + | x | ) | + | 1 | x | ( | 2 | + | x | ) | ( | 3 | + | x | ) | + | 1 | = | 2 | x | × | 3 | + | 2 | x | x | + | 1 | x | x | ( | 3 | + | x | ) |
| 42 | + | 14 | x | + | 7 | x | ( | 3 | + | x | ) | + | 1 | x | ( | 2 | + | x | ) | ( | 3 | + | x | ) | + | 1 | x | = | 6 | x | + | 2 | x | x | + | 1 | x | x | ( | 3 | + | x | ) |
| 42 | + | 14 | x | + | 7 | x | × | 3 | + | 7 | x | x | + | 1 | x | ( | 2 | + | x | ) | = | 6 | x | + | 2 | x | x | + | 1 | x | x | ( | 3 | + | x | ) |
| 42 | + | 14 | x | + | 7 | x | × | 3 | + | 7 | x | x | + | 1 | x | ( | 2 | + | x | ) | = | 6 | x | + | 2 | x | x | + | 1 | x | x | × | 3 | + | 1 | x | x |
| 42 | + | 14 | x | + | 21 | x | + | 7 | x | x | + | 1 | x | ( | 2 | + | x | ) | ( | 3 | + | x | ) | = | 6 | x | + | 2 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 42 | + | 35 | x | + | 7 | x | x | + | 1 | x | ( | 2 | + | x | ) | ( | 3 | + | x | ) | + | 1 | x | = | 6 | x | + | 2 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 42 | + | 35 | x | + | 7 | x | x | + | 1 | x | × | 2 | ( | 3 | + | x | ) | + | 1 | x | = | 6 | x | + | 2 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 42 | + | 35 | x | + | 7 | x | x | + | 2 | x | ( | 3 | + | x | ) | + | 1 | x | x | = | 6 | x | + | 2 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 42 | + | 35 | x | + | 7 | x | x | + | 2 | x | × | 3 | + | 2 | x | x | = | 6 | x | + | 2 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 42 | + | 35 | x | + | 7 | x | x | + | 6 | x | + | 2 | x | x | + | 1 | = | 6 | x | + | 2 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 42 | + | 41 | x | + | 7 | x | x | + | 2 | x | x | + | 1 | x | x | = | 6 | x | + | 2 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 42 | + | 41 | x | + | 7 | x | x | + | 2 | x | x | + | 1 | x | x | = | 6 | x | + | 2 | x | x | + | 3 | x | x | + | 1 | x | x | x |
| 42 | + | 41 | x | + | 7 | x | x | + | 2 | x | x | + | 3 | x | x | = | 6 | x | + | 2 | x | x | + | 3 | x | x | + | 1 | x | x | x |