| 1 | ÷ | ( | 1 | ÷ | ( | 2 | a | + | 6 | ) | + | 1 | ÷ | a | ) | = | 1 | ÷ | ( | 1 | ÷ | ( | a | + | 6 | ) | + | 1 2 | ÷ | a | ) | × | 3 | ÷ | 4 |
| 方程两边同时乘以: | ( | 1 | ÷ | ( | 2 | a | + | 6 | ) | + | 1 | ÷ | a | ) | , | ( | 1 | ÷ | ( | a | + | 6 | ) | + | 1 2 | ÷ | a | ) |
| 1 | ( | 1 | ÷ | ( | a | + | 6 | ) | + | 1 2 | ÷ | a | ) | = | 1 | × | 3 | ÷ | 4 | × | ( | 1 | ÷ | ( | 2 | a | + | 6 | ) | + | 1 | ÷ | a | ) |
| 1 | × | 1 | ÷ | ( | a | + | 6 | ) | + | 1 | × | 1 2 | ÷ | a | = | 1 | × | 3 | ÷ | 4 | × | ( | 1 | ÷ | ( | 2 | a | + | 6 | ) | + | 1 | ÷ | a | ) |
| 1 | × | 1 | ÷ | ( | a | + | 6 | ) | + | 1 | × | 1 2 | ÷ | a | = | 1 | × | 3 | ÷ | 4 | × | 1 | ÷ | ( | 2 | a | + | 6 | ) | + | 1 | × | 3 | ÷ | 4 | × | 1 | ÷ | a |
| 1 | ÷ | ( | a | + | 6 | ) | + | 1 2 | ÷ | a | = | 3 4 | ÷ | ( | 2 | a | + | 6 | ) | + | 3 4 | ÷ | a |
| 方程两边同时乘以: | ( | a | + | 6 | ) | , | ( | 2 | a | + | 6 | ) |
| 1 | ( | 2 | a | + | 6 | ) | + | 1 2 | ÷ | a | × | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) | = | 3 4 | ( | a | + | 6 | ) | + | 3 4 | ÷ | a | × | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) |
| 1 | × | 2 | a | + | 1 | × | 6 | + | 1 2 | ÷ | a | × | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) | = | 3 4 | ( | a | + | 6 | ) | + | 3 4 | ÷ | a | × | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) |
| 1 | × | 2 | a | + | 1 | × | 6 | + | 1 2 | ÷ | a | × | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) | = | 3 4 | a | + | 3 4 | × | 6 | + | 3 4 | ÷ | a | × | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) |
| 2 | a | + | 6 | + | 1 2 | ÷ | a | × | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) | = | 3 4 | a | + | 9 2 | + | 3 4 | ÷ | a | × | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) |
| 方程两边同时乘以: | a |
| 2 | a | a | + | 6 | a | + | 1 2 | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) | = | 3 4 | a | a | + | 9 2 | a | + | 3 4 | ÷ | 1 | × | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) | × | 1 |
| 2 | a | a | + | 6 | a | + | 1 2 | a | ( | 2 | a | + | 6 | ) | + | 1 2 | × | 6 | ( | 2 | a | + | 6 | ) | = | 3 4 | a | a | + | 9 2 | a | + | 3 4 | ÷ | 1 | × | ( | a | + | 6 | ) | ( | 2 | a | + | 6 | ) | × | 1 |
| 2 | a | a | + | 6 | a | + | 1 2 | a | ( | 2 | a | + | 6 | ) | + | 1 2 | × | 6 | ( | 2 | a | + | 6 | ) | = | 3 4 | a | a | + | 9 2 | a | + | 3 4 | ÷ | 1 | × | a | ( | 2 | a | + | 6 | ) | × | 1 | + | 3 4 | ÷ | 1 |
| 2 | a | a | + | 6 | a | + | 1 2 | a | ( | 2 | a | + | 6 | ) | + | 3 | ( | 2 | a | + | 6 | ) | = | 3 4 | a | a | + | 9 2 | a | + | 3 4 | a | ( | 2 | a | + | 6 | ) | + | 9 2 | ( | 2 | a | + | 6 | ) |
| 2 | a | a | + | 6 | a | + | 1 2 | a | × | 2 | a | + | 1 2 | a | × | 6 | = | 3 4 | a | a | + | 9 2 | a | + | 3 4 | a | ( | 2 | a | + | 6 | ) | + | 9 2 | ( | 2 | a | + | 6 | ) |
| 2 | a | a | + | 6 | a | + | 1 2 | a | × | 2 | a | + | 1 2 | a | × | 6 | = | 3 4 | a | a | + | 9 2 | a | + | 3 4 | a | × | 2 | a | + | 3 4 | a | × | 6 |
| 2 | a | a | + | 6 | a | + | 1 | a | a | + | 3 | a | + | 3 | ( | 2 | a | + | 6 | ) | = | 3 4 | a | a | + | 9 2 | a | + | 3 2 | a | a | + | 9 2 | a | + | 9 2 | ( | 2 | a | + | 6 | ) |
| 2 | a | a | + | 9 | a | + | 1 | a | a | + | 3 | ( | 2 | a | + | 6 | ) | = | 3 4 | a | a | + | 9 | a | + | 3 2 | a | a | + | 9 2 | ( | 2 | a | + | 6 | ) |
| 2 | a | a | + | 9 | a | + | 1 | a | a | + | 3 | × | 2 | a | + | 3 | = | 3 4 | a | a | + | 9 | a | + | 3 2 | a | a | + | 9 2 | ( | 2 | a | + | 6 | ) |
| 2 | a | a | + | 9 | a | + | 1 | a | a | + | 3 | × | 2 | a | + | 3 | = | 3 4 | a | a | + | 9 | a | + | 3 2 | a | a | + | 9 2 | × | 2 | a | + | 9 2 |
| 2 | a | a | + | 9 | a | + | 1 | a | a | + | 6 | a | + | 18 | = | 3 4 | a | a | + | 9 | a | + | 3 2 | a | a | + | 9 | a | + | 27 |
| 2 | a | a | + | 15 | a | + | 1 | a | a | + | 18 | = | 3 4 | a | a | + | 18 | a | + | 3 2 | a | a | + | 27 |