| 20000 | − | 3000 | − | ( | 2600 | − | X | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | ) | × | 12 100 | − | X | ÷ | ( | 1 | + | 13 100 | ) | = | 0 |
| 方程两边同时乘以: | ( | 1 | + | 13 100 | ) |
| 20000 | ( | 1 | + | 13 100 | ) | − | 3000 | ( | 1 | + | 13 100 | ) | − | ( | 2600 | − | X | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | ) | × | 12 100 | ( | 1 | + | 13 100 | ) | − | X | = | 0 |
| 20000 | × | 1 | + | 20000 | × | 13 100 | − | 3000 | ( | 1 | + | 13 100 | ) | − | ( | 2600 | − | X | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | ) | × | 12 100 | ( | 1 | + | 13 100 | ) | − | X | = | 0 |
| 20000 | + | 2600 | − | 3000 | ( | 1 | + | 13 100 | ) | − | ( | 2600 | − | X | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | ) | × | 12 100 | ( | 1 | + | 13 100 | ) | − | X | = | 0 |
| 22600 | − | 3000 | ( | 1 | + | 13 100 | ) | − | ( | 2600 | − | X | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | ) | × | 12 100 | ( | 1 | + | 13 100 | ) | − | X | = | 0 |
| 22600 | − | 3000 | × | 1 | − | 3000 | × | 13 100 | − | ( | 2600 | − | X | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | ) | × | 12 100 | ( | 1 | + | 13 100 | ) | − | X | = | 0 |
| 22600 | − | 3000 | − | 390 | − | ( | 2600 | − | X | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | ) | × | 12 100 | ( | 1 | + | 13 100 | ) | − | X | = | 0 |
| 19210 | − | ( | 2600 | − | X | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | ) | × | 12 100 | ( | 1 | + | 13 100 | ) | − | X | = | 0 |
| 19210 | − | 2600 | × | 12 100 | ( | 1 | + | 13 100 | ) | + | X | ÷ | ( | 1 | + | 13 100 | ) | × | 13 100 | × | 12 100 | ( | 1 | + | 13 100 | ) | − | X | = | 0 |
| 19210 | − | 312 | ( | 1 | + | 13 100 | ) | + | X | ÷ | ( | 1 | + | 13 100 | ) | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | = | 0 |
| 方程两边同时乘以: | ( | 1 | + | 13 100 | ) |
| 19210 | ( | 1 | + | 13 100 | ) | − | 312 | ( | 1 | + | 13 100 | ) | ( | 1 | + | 13 100 | ) | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
| 19210 | × | 1 | + | 19210 | × | 13 100 | − | 312 | ( | 1 | + | 13 100 | ) | ( | 1 | + | 13 100 | ) | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
| 19210 | + | 24973 10 | − | 312 | ( | 1 | + | 13 100 | ) | ( | 1 | + | 13 100 | ) | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
217073 10 | − | 312 | ( | 1 | + | 13 100 | ) | ( | 1 | + | 13 100 | ) | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
217073 10 | − | 312 | × | 1 | ( | 1 | + | 13 100 | ) | − | 312 | × | 13 100 | ( | 1 | + | 13 100 | ) | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
217073 10 | − | 312 | ( | 1 | + | 13 100 | ) | − | 1014 25 | ( | 1 | + | 13 100 | ) | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
217073 10 | − | 312 | × | 1 | − | 312 | × | 13 100 | − | 1014 25 | ( | 1 | + | 13 100 | ) | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
217073 10 | − | 312 | − | 1014 25 | − | 1014 25 | ( | 1 | + | 13 100 | ) | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
1067737 50 | − | 1014 25 | ( | 1 | + | 13 100 | ) | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
1067737 50 | − | 1014 25 | × | 1 | − | 1014 25 | × | 13 100 | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
1067737 50 | − | 1014 25 | − | 6591 1250 | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
13318067 625 | + | X | × | 39 2500 | ( | 1 | + | 13 100 | ) | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
13318067 625 | + | X | × | 39 2500 | × | 1 | + | X | × | 39 2500 | × | 13 100 | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
13318067 625 | + | X | × | 39 2500 | + | X | × | 507 250000 | − | X | ( | 1 | + | 13 100 | ) | = | 0 |
13318067 625 | + | 4407 250000 | X | − | X | ( | 1 | + | 13 100 | ) | = | 0 |