| 3 | ÷ | ( | 1 | + | 1 | ÷ | 2 | ) | + | ( | X | ÷ | ( | 1 | + | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | ) | ) | = | 2 |
| 方程两边同时乘以: | ( | 1 | + | 1 | ÷ | 2 | ) |
| 3 | + | ( | X | ÷ | ( | 1 | + | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | ) | ) | ( | 1 | + | 1 | ÷ | 2 | ) | = | 2 | ( | 1 | + | 1 | ÷ | 2 | ) |
| 3 | + | X | ÷ | ( | 1 | + | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | ) | × | ( | 1 | + | 1 | ÷ | 2 | ) | = | 2 | ( | 1 | + | 1 | ÷ | 2 | ) |
| 3 | + | X | ÷ | ( | 1 | + | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | ) | × | ( | 1 | + | 1 | ÷ | 2 | ) | = | 2 | × | 1 | + | 2 | × | 1 | ÷ | 2 |
| 3 | + | X | ÷ | ( | 1 | + | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | ) | × | ( | 1 | + | 1 | ÷ | 2 | ) | = | 2 | + | 1 |
| 3 | + | X | ÷ | ( | 1 | + | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | ) | × | ( | 1 | + | 1 | ÷ | 2 | ) | = | 3 |
| 方程两边同时乘以: | ( | 1 | + | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | ) |
| 3 | ( | 1 | + | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | = | 3 | ( | 1 | + | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | ) |
| 3 | × | 1 | + | 3 | × | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | = | 3 | ( | 1 | + | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | ) |
| 3 | × | 1 | + | 3 | × | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | = | 3 | × | 1 | + | 3 | × | 2 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) |
| 3 | + | 6 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | = | 3 | + | 6 | ÷ | ( | 1 | − | 1 | ÷ | 3 | ) |
| 方程两边同时乘以: | ( | 1 | − | 1 | ÷ | 3 | ) | , | ( | 1 | − | 1 | ÷ | 3 | ) |
| 3 | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 3 | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
| 3 | × | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | − | 3 | × | 1 | ÷ | 3 | × | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 3 | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
| 3 | × | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | − | 3 | × | 1 | ÷ | 3 | × | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 3 | × | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | − | 3 | × | 1 | ÷ | 3 | × | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
| 3 | ( | 1 | − | 1 | ÷ | 3 | ) | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 3 | ( | 1 | − | 1 | ÷ | 3 | ) | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
| 3 | × | 1 | − | 3 | × | 1 | ÷ | 3 | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 3 | ( | 1 | − | 1 | ÷ | 3 | ) | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
| 3 | × | 1 | − | 3 | × | 1 | ÷ | 3 | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 3 | × | 1 | − | 3 | × | 1 | ÷ | 3 | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
| 3 | − | 1 | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 3 | − | 1 | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
| 2 | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 2 | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
| 2 | − | 1 | × | 1 | + | 1 | × | 1 | ÷ | 3 | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 2 | − | 1 | ( | 1 | − | 1 | ÷ | 3 | ) | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
| 2 | − | 1 | × | 1 | + | 1 | × | 1 | ÷ | 3 | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 2 | − | 1 | × | 1 | + | 1 | × | 1 | ÷ | 3 | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
| 2 | − | 1 | + | 1 3 | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 2 | − | 1 | + | 1 3 | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
4 3 | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 4 3 | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |
4 3 | + | 6 | × | 1 | − | 6 | × | 1 | ÷ | 3 | + | X | ( | 1 | + | 1 | ÷ | 2 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | ( | 1 | − | 1 | ÷ | 3 | ) | = | 4 3 | + | 6 | ( | 1 | − | 1 | ÷ | 3 | ) |