| ( | 1 | − | x | ) | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | = | 2 |
| 方程左边 = | 1 | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 1 | × | 1 | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | + | 1 | × | 24 25 | x | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 1 | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | + | 24 25 | x | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 1 | ( | 1 | − | x | ) | + | 1 | ( | 1 | + | 24 25 | x | ) | + | 24 25 | x | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 1 | × | 1 | − | 1 | x | + | 1 | ( | 1 | + | 24 25 | x | ) | + | 24 25 | x | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 1 | − | 1 | x | + | 1 | ( | 1 | + | 24 25 | x | ) | + | 24 25 | x | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 1 | − | 1 | x | + | 1 | × | 1 | + | 1 | × | 24 25 | x | + | 24 25 | x | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | − | x |
| = | 1 | − | 1 | x | + | 1 | + | 24 25 | x | + | 24 25 | x | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 2 | − | 1 25 | x | + | 24 25 | x | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 2 | − | 1 25 | x | + | 24 25 | x | ( | 1 | − | x | ) | + | 24 25 | x | ( | 1 | + | 24 25 | x | ) | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 2 | − | 1 25 | x | + | 24 25 | x | × | 1 | − | 24 25 | x | x | + | 24 25 | x | ( | 1 | + | 24 25 | x | ) |
| = | 2 | − | 1 25 | x | + | 24 25 | x | − | 24 25 | x | x | + | 24 25 | x | ( | 1 | + | 24 25 | x | ) | − | x |
| = | 2 | + | 23 25 | x | − | 24 25 | x | x | + | 24 25 | x | ( | 1 | + | 24 25 | x | ) | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 2 | + | 23 25 | x | − | 24 25 | x | x | + | 24 25 | x | × | 1 | + | 24 25 | x | × | 24 25 |
| = | 2 | + | 23 25 | x | − | 24 25 | x | x | + | 24 25 | x | + | 576 625 | x | x | − | x |
| = | 2 | + | 47 25 | x | − | 24 25 | x | x | + | 576 625 | x | x | − | x | ( | 1 | + | 24 25 | x | ) | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 2 | + | 47 25 | x | − | 24 25 | x | x | + | 576 625 | x | x | − | x | × | 1 | ( | ( | 1 | − | x | ) | + | ( | 1 | + | 24 25 | x | ) | ) |
| = | 2 | + | 47 25 | x | − | 24 25 | x | x | + | 576 625 | x | x | − | x | × | 1 | ( | 1 | − | x | ) |
| = | 2 | + | 47 25 | x | − | 24 25 | x | x | + | 576 625 | x | x | − | x | × | 1 | × | 1 |
| = | 2 | + | 47 25 | x | − | 24 25 | x | x | + | 576 625 | x | x | − | x | × | 1 | + | x |
| = | 2 | + | 22 25 | x | − | 24 25 | x | x | + | 576 625 | x | x | + | x | × | 1 | x |
| = | 2 | + | 22 25 | x | − | 24 25 | x | x | + | 576 625 | x | x | + | x | × | 1 | x |
| = | 2 | + | 22 25 | x | − | 24 25 | x | x | + | 576 625 | x | x | + | x | × | 1 | x |
| = | 2 | − | 3 25 | x | − | 24 25 | x | x | + | 576 625 | x | x | + | x | × | 1 | x |
| = | 2 | − | 3 25 | x | − | 24 25 | x | x | + | 576 625 | x | x | + | x | × | 1 | x |