| ( | x | − | 4 | ) | ( | x | + | 2 | ) | = | 1 | ÷ | 6 | × | ( | 1 | ÷ | ( | x | − | 4 | ) | − | 1 | ÷ | ( | x | + | 2 | ) | ) |
| x | ( | x | + | 2 | ) | − | 4 | ( | x | + | 2 | ) | = | 1 | ÷ | 6 | × | ( | 1 | ÷ | ( | x | − | 4 | ) | − | 1 | ÷ | ( | x | + | 2 | ) | ) |
| x | ( | x | + | 2 | ) | − | 4 | ( | x | + | 2 | ) | = | 1 | ÷ | 6 | × | 1 | ÷ | ( | x | − | 4 | ) | − | 1 | ÷ | 6 | × | 1 | ÷ | ( | x | + | 2 | ) |
| x | ( | x | + | 2 | ) | − | 4 | ( | x | + | 2 | ) | = | 1 6 | ÷ | ( | x | − | 4 | ) | − | 1 6 | ÷ | ( | x | + | 2 | ) |
| 方程两边同时乘以: | ( | x | − | 4 | ) |
| x | ( | x | + | 2 | ) | ( | x | − | 4 | ) | − | 4 | ( | x | + | 2 | ) | ( | x | − | 4 | ) | = | 1 6 | − | 1 6 | ÷ | ( | x | + | 2 | ) | × | ( | x | − | 4 | ) |
| x | x | ( | x | − | 4 | ) | + | x | × | 2 | ( | x | − | 4 | ) | − | 4 | ( | x | + | 2 | ) | ( | x | − | 4 | ) | = | 1 6 | − | 1 6 | ÷ | ( | x | + | 2 | ) | × | ( | x | − | 4 | ) |
| x | x | ( | x | − | 4 | ) | + | x | × | 2 | ( | x | − | 4 | ) | − | 4 | ( | x | + | 2 | ) | ( | x | − | 4 | ) | = | 1 6 | − | 1 6 | ÷ | ( | x | + | 2 | ) | × | x | + | 1 6 | ÷ | ( | x | + | 2 | ) | × | 4 |
| x | x | ( | x | − | 4 | ) | + | x | × | 2 | ( | x | − | 4 | ) | − | 4 | ( | x | + | 2 | ) | ( | x | − | 4 | ) | = | 1 6 | − | 1 6 | ÷ | ( | x | + | 2 | ) | × | x | + | 2 3 | ÷ | ( | x | + | 2 | ) |
| 方程两边同时乘以: | ( | x | + | 2 | ) |
| x | x | ( | x | − | 4 | ) | ( | x | + | 2 | ) | + | x | × | 2 | ( | x | − | 4 | ) | ( | x | + | 2 | ) | − | 4 | ( | x | + | 2 | ) | ( | x | − | 4 | ) | ( | x | + | 2 | ) | = | 1 6 | ( | x | + | 2 | ) | − | 1 6 | x | + | 2 3 |
| x | x | x | ( | x | + | 2 | ) | − | x | x | × | 4 | ( | x | + | 2 | ) | + | x | × | 2 | ( | x | − | 4 | ) | ( | x | + | 2 | ) | = | 1 6 | ( | x | + | 2 | ) | − | 1 6 | x | + | 2 3 |
| x | x | x | ( | x | + | 2 | ) | − | x | x | × | 4 | ( | x | + | 2 | ) | + | x | × | 2 | ( | x | − | 4 | ) | ( | x | + | 2 | ) | = | 1 6 | x | + | 1 6 | × | 2 | − | 1 6 | x | + | 2 3 |
| x | x | x | ( | x | + | 2 | ) | − | x | x | × | 4 | ( | x | + | 2 | ) | + | x | × | 2 | ( | x | − | 4 | ) | ( | x | + | 2 | ) | = | 1 6 | x | + | 1 3 | − | 1 6 | x | + | 2 3 |
| x | x | x | ( | x | + | 2 | ) | − | x | x | × | 4 | ( | x | + | 2 | ) | + | x | × | 2 | ( | x | − | 4 | ) | ( | x | + | 2 | ) | = | 0 | x | + | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | ( | x | + | 2 | ) | = | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | x | = | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | x | = | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | x | = | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | x | = | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | x | = | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | x | = | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | x | = | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | x | = | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | x | = | 1 |
| x | x | x | x | + | x | x | x | × | 2 | − | x | x | × | 4 | x | = | 1 |