| 1 | ÷ | ( | x | ( | x | + | 1 | ) | ) | + | 1 | ÷ | ( | ( | x | + | 1 | ) | ( | x | + | 2 | ) | ) | + | 1 | ÷ | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | = | 0 |
| 方程两边同时乘以: | ( | x | ( | x | + | 1 | ) | ) |
| 1 | + | 1 | ÷ | ( | ( | x | + | 1 | ) | ( | x | + | 2 | ) | ) | × | ( | x | ( | x | + | 1 | ) | ) | + | 1 | ÷ | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | × | ( | x | ( | x | + | 1 | ) | ) | = | 0 |
| 1 | + | 1 | ÷ | ( | ( | x | + | 1 | ) | ( | x | + | 2 | ) | ) | × | x | ( | x | + | 1 | ) | + | 1 | ÷ | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | × | ( | x | ( | x | + | 1 | ) | ) | = | 0 |
| 方程两边同时乘以: | ( | ( | x | + | 1 | ) | ( | x | + | 2 | ) | ) |
| 1 | ( | ( | x | + | 1 | ) | ( | x | + | 2 | ) | ) | + | 1 | x | ( | x | + | 1 | ) | + | 1 | ÷ | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | × | ( | x | ( | x | + | 1 | ) | ) | ( | ( | x | + | 1 | ) | ( | x | + | 2 | ) | ) | = | 0 |
| 1 | ( | x | + | 1 | ) | ( | x | + | 2 | ) | + | 1 | x | ( | x | + | 1 | ) | + | 1 | ÷ | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | × | ( | x | ( | x | + | 1 | ) | ) | ( | ( | x | + | 1 | ) | ( | x | + | 2 | ) | ) | = | 0 |
| 方程两边同时乘以: | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) |
| 1 | ( | x | + | 1 | ) | ( | x | + | 2 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | x | ( | x | + | 1 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | ( | x | ( | x | + | 1 | ) | ) | ( | ( | x | + | 1 | ) | ( | x | + | 2 | ) | ) | = | 0 |
| 1 | x | ( | x | + | 2 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | × | 1 | ( | x | + | 2 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | x | ( | x | + | 1 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | = | 0 |
| 1 | x | ( | x | + | 2 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | ( | x | + | 2 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | x | ( | x | + | 1 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | = | 0 |
| 1 | x | x | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | x | × | 2 | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | ( | x | + | 2 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | = | 0 |
| 1 | x | x | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 2 | x | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | ( | x | + | 2 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | x | = | 0 |
| 1 | x | x | ( | x | + | 2 | ) | ( | x | + | 3 | ) | + | 2 | x | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | ( | x | + | 2 | ) | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | + | 1 | = | 0 |
| 1 | x | x | x | ( | x | + | 3 | ) | + | 1 | x | x | × | 2 | ( | x | + | 3 | ) | + | 2 | x | = | 0 |
| 1 | x | x | x | ( | x | + | 3 | ) | + | 2 | x | x | ( | x | + | 3 | ) | + | 2 | x | ( | ( | x | + | 2 | ) | ( | x | + | 3 | ) | ) | = | 0 |
| 1 | x | x | x | x | + | 1 | x | x | x | × | 3 | + | 2 | x | = | 0 |
| 1 | x | x | x | x | + | 3 | x | x | x | + | 2 | x | x | = | 0 |
| 1 | x | x | x | x | + | 3 | x | x | x | + | 2 | x | x | = | 0 |
| 1 | x | x | x | x | + | 3 | x | x | x | + | 2 | x | x | = | 0 |
| 1 | x | x | x | x | + | 3 | x | x | x | + | 2 | x | x | = | 0 |
| 1 | x | x | x | x | + | 3 | x | x | x | + | 2 | x | x | = | 0 |
| 1 | x | x | x | x | + | 3 | x | x | x | + | 2 | x | x | = | 0 |
| 1 | x | x | x | x | + | 3 | x | x | x | + | 2 | x | x | = | 0 |
| 1 | x | x | x | x | + | 3 | x | x | x | + | 2 | x | x | = | 0 |
| 1 | x | x | x | x | + | 3 | x | x | x | + | 2 | x | x | = | 0 |
| 1 | x | x | x | x | + | 3 | x | x | x | + | 2 | x | x | = | 0 |