| 10 | = | ( | 130897 100 | + | 1 | + | X | + | ( | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 | ) | ÷ | ( | 602 | + | 1 | − | 990 | + | 360 | ) | ) |
| 10 | = | 130897 100 | + | 1 | + | X | + | ( | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 | ) | ÷ | ( | 602 | + | 1 | − | 990 | + | 360 | ) |
| 10 | = | 130997 100 | + | X | + | ( | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 | ) | ÷ | ( | 602 | + | 1 | − | 990 | + | 360 | ) |
| 方程两边同时乘以: | ( | 602 | + | 1 | − | 990 | + | 360 | ) |
| 10 | ( | 602 | + | 1 | − | 990 | + | 360 | ) | = | 130997 100 | ( | 602 | + | 1 | − | 990 | + | 360 | ) | + | X | ( | 602 | + | 1 | − | 990 | + | 360 | ) | + | ( | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 | ) |
| 10 | × | 602 | + | 10 | × | 1 | − | 10 | × | 990 | + | 10 | × | 360 | = | 130997 100 | ( | 602 | + | 1 | − | 990 | + | 360 | ) | + | X | ( | 602 | + | 1 | − | 990 | + | 360 | ) | + | ( | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 | ) |
| 10 | × | 602 | + | 10 | × | 1 | − | 10 | × | 990 | + | 10 | × | 360 | = | 130997 100 | × | 602 | + | 130997 100 | × | 1 | − | 130997 100 | × | 990 | + | 130997 100 | × | 360 | + | X | ( | 602 | + | 1 | − | 990 | + | 360 | ) | + | ( | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 | ) |
| 6020 | + | 10 | − | 9900 | + | 3600 | = | 39430097 50 | + | 130997 100 | − | 12968703 10 | + | 2357946 5 | + | X | ( | 602 | + | 1 | − | 990 | + | 360 | ) | + | ( | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 | ) |
| - | 270 | = | - | 3536919 100 | + | X | ( | 602 | + | 1 | − | 990 | + | 360 | ) | + | ( | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 | ) |
| - | 270 | = | - | 3536919 100 | + | X | × | 602 | + | X | × | 1 | − | X | × | 990 | + | X | × | 360 | + | ( | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 | ) |
| - | 270 | = | - | 3536919 100 | − | 27 | X | + | ( | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 | ) |
| - | 270 | = | - | 3536919 100 | − | 27 | X | + | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) | + | 123499 50 |
| - | 270 | = | - | 3289921 100 | − | 27 | X | + | ( | 130897 100 | + | 1 | + | X | ) | ÷ | ( | 602 | + | 1 | ) | × | ( | - | 990 | ) |
| 方程两边同时乘以: | ( | 602 | + | 1 | ) |
| - | 270 | ( | 602 | + | 1 | ) | = | - | 3289921 100 | ( | 602 | + | 1 | ) | − | 27 | X | ( | 602 | + | 1 | ) | + | ( | 130897 100 | + | 1 | + | X | ) | ( | - | 990 | ) |
| - | 270 | × | 602 | − | 270 | × | 1 | = | - | 3289921 100 | ( | 602 | + | 1 | ) | − | 27 | X | ( | 602 | + | 1 | ) | + | ( | 130897 100 | + | 1 | + | X | ) | ( | - | 990 | ) |
| - | 270 | × | 602 | − | 270 | × | 1 | = | - | 3289921 100 | × | 602 | − | 3289921 100 | × | 1 | − | 27 | X | ( | 602 | + | 1 | ) | + | ( | 130897 100 | + | 1 | + | X | ) | ( | - | 990 | ) |
| - | 162540 | − | 270 | = | - | 990266221 50 | − | 3289921 100 | − | 27 | X | ( | 602 | + | 1 | ) | + | ( | 130897 100 | + | 1 | + | X | ) | ( | - | 990 | ) |