| ( | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | ÷ | 3 | − | X | ) | ÷ | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | ÷ | 3 | × | 1 4 | = | ( | X | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | ÷ | 3 | ) | ÷ | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | ÷ | 3 | × | 1 2 |
| 方程两边同时乘以: | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | , | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) |
| ( | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | ÷ | 3 | − | X | ) | ÷ | 3 | × | 1 4 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | ( | X | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | ÷ | 3 | ) | ÷ | 3 | × | 1 2 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
| ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | ÷ | 3 | ÷ | 3 | × | 1 4 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | ÷ | 3 | × | 1 4 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | ( | X | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | ÷ | 3 | ) | ÷ | 3 | × | 1 2 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
| ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | ÷ | 3 | ÷ | 3 | × | 1 4 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | ÷ | 3 | × | 1 4 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | X | ÷ | 3 | × | 1 2 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | ÷ | 3 | ÷ | 3 | × | 1 2 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
| ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | X | × | 1 6 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
100 100 | ( | 3 | − | 1 | ) | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | X | × | 1 6 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
100 100 | ( | 3 | − | 1 | ) | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | X | × | 1 6 | × | 100 100 | ( | 3 | − | 1 | ) | + | X | × | 1 6 | X | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
1 36 | ( | 3 | − | 1 | ) | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | X | × | 1 6 | ( | 3 | − | 1 | ) | + | X | × | 1 6 | X | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
1 36 | × | 3 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | 1 36 | × | 1 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | X | × | 1 6 | ( | 3 | − | 1 | ) | + | X | × | 1 6 | X | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
1 36 | × | 3 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | 1 36 | × | 1 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | X | × | 1 6 | × | 3 | − | X | × | 1 6 | × | 1 | + | X | × | 1 6 | X | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | X | × | 1 2 | − | X | × | 1 6 | + | X | × | 1 6 | X | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | 1 3 | X | + | X | × | 1 6 | X | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
1 12 | × | 85 100 | ( | 3 | − | 1 | ) | + | 1 12 | X | − | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | = | 1 3 | X | + | X | × | 1 6 | X | − | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
1 12 | × | 85 100 | ( | 3 | − | 1 | ) | + | 1 12 | X | − | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | = | 1 3 | X | + | X | × | 1 6 | X | − | 85 100 | ( | 3 | − | 1 | ) | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
17 240 | ( | 3 | − | 1 | ) | + | 1 12 | X | − | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | 1 3 | X | + | X | × | 1 6 | X | − | 17 360 | ( | 3 | − | 1 | ) | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
17 240 | × | 3 | − | 17 240 | × | 1 | + | 1 12 | X | − | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | = | 1 3 | X | + | X | × | 1 6 | X | − | 17 360 | ( | 3 | − | 1 | ) | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
17 240 | × | 3 | − | 17 240 | × | 1 | + | 1 12 | X | − | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | = | 1 3 | X | + | X | × | 1 6 | X | − | 17 360 | × | 3 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | + | 17 360 | × | 1 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X |
17 80 | − | 17 240 | + | 1 12 | X | − | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | 1 3 | X | + | X | × | 1 6 | X | − | 17 120 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | + | 17 360 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
17 120 | + | 1 12 | X | − | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | 1 3 | X | + | X | × | 1 6 | X | − | 17 120 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | + | 17 360 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
17 120 | + | 1 12 | X | − | 1 36 | × | 85 100 | ( | 3 | − | 1 | ) | − | 1 36 | X | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | = | 1 3 | X | + | X | × | 1 6 | X | − | 17 120 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | + | 17 360 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
17 120 | + | 1 12 | X | − | 1 36 | × | 85 100 | ( | 3 | − | 1 | ) | − | 1 36 | X | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | = | 1 3 | X | + | X | × | 1 6 | X | − | 17 120 | × | 100 100 | ( | 3 | − | 1 | ) | − | 17 120 | X | + | 17 360 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
17 120 | + | 1 12 | X | − | 17 720 | ( | 3 | − | 1 | ) | − | 1 36 | X | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | = | 1 3 | X | + | X | × | 1 6 | X | − | 17 120 | ( | 3 | − | 1 | ) | − | 17 120 | X | + | 17 360 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X |
17 120 | + | 1 18 | X | − | 17 720 | ( | 3 | − | 1 | ) | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | = | 23 120 | X | + | X | × | 1 6 | X | − | 17 120 | ( | 3 | − | 1 | ) | + | 17 360 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
17 120 | + | 1 18 | X | − | 17 720 | × | 3 | + | 17 720 | × | 1 | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | = | 23 120 | X | + | X | × | 1 6 | X | − | 17 120 | ( | 3 | − | 1 | ) | + | 17 360 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 18 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) |
17 120 | + | 1 18 | X | − | 17 720 | × | 3 | + | 17 720 | × | 1 | + | X | × | 1 36 | ( | 85 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X | × | 1 12 | = | 23 120 | X | + | X | × | 1 6 | X | − | 17 120 | × | 3 | + | 17 120 | × | 1 | + | 17 360 | ( | 100 100 | ( | 3 | − | 1 | ) | + | X | ) | − | X |