本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(2{x}^{2} + 3x + 2)}{(2sqrt({x}^{2} + x + 1)sqrt({x}^{2} + 2x + 4))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{sqrt(x^{2} + x + 1)sqrt(x^{2} + 2x + 4)} + \frac{\frac{3}{2}x}{sqrt(x^{2} + x + 1)sqrt(x^{2} + 2x + 4)} + \frac{1}{sqrt(x^{2} + x + 1)sqrt(x^{2} + 2x + 4)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{sqrt(x^{2} + x + 1)sqrt(x^{2} + 2x + 4)} + \frac{\frac{3}{2}x}{sqrt(x^{2} + x + 1)sqrt(x^{2} + 2x + 4)} + \frac{1}{sqrt(x^{2} + x + 1)sqrt(x^{2} + 2x + 4)}\right)}{dx}\\=&\frac{2x}{sqrt(x^{2} + x + 1)sqrt(x^{2} + 2x + 4)} + \frac{x^{2}*-(2x + 1 + 0)*\frac{1}{2}}{(x^{2} + x + 1)(x^{2} + x + 1)^{\frac{1}{2}}sqrt(x^{2} + 2x + 4)} + \frac{x^{2}*-(2x + 2 + 0)*\frac{1}{2}}{sqrt(x^{2} + x + 1)(x^{2} + 2x + 4)(x^{2} + 2x + 4)^{\frac{1}{2}}} + \frac{\frac{3}{2}}{sqrt(x^{2} + x + 1)sqrt(x^{2} + 2x + 4)} + \frac{\frac{3}{2}x*-(2x + 1 + 0)*\frac{1}{2}}{(x^{2} + x + 1)(x^{2} + x + 1)^{\frac{1}{2}}sqrt(x^{2} + 2x + 4)} + \frac{\frac{3}{2}x*-(2x + 2 + 0)*\frac{1}{2}}{sqrt(x^{2} + x + 1)(x^{2} + 2x + 4)(x^{2} + 2x + 4)^{\frac{1}{2}}} + \frac{-(2x + 1 + 0)*\frac{1}{2}}{(x^{2} + x + 1)(x^{2} + x + 1)^{\frac{1}{2}}sqrt(x^{2} + 2x + 4)} + \frac{-(2x + 2 + 0)*\frac{1}{2}}{sqrt(x^{2} + x + 1)(x^{2} + 2x + 4)(x^{2} + 2x + 4)^{\frac{1}{2}}}\\=&\frac{2x}{sqrt(x^{2} + x + 1)sqrt(x^{2} + 2x + 4)} - \frac{x^{3}}{(x^{2} + x + 1)^{\frac{3}{2}}sqrt(x^{2} + 2x + 4)} - \frac{2x^{2}}{(x^{2} + x + 1)^{\frac{3}{2}}sqrt(x^{2} + 2x + 4)} - \frac{x^{3}}{(x^{2} + 2x + 4)^{\frac{3}{2}}sqrt(x^{2} + x + 1)} - \frac{5x^{2}}{2(x^{2} + 2x + 4)^{\frac{3}{2}}sqrt(x^{2} + x + 1)} + \frac{3}{2sqrt(x^{2} + x + 1)sqrt(x^{2} + 2x + 4)} - \frac{7x}{4(x^{2} + x + 1)^{\frac{3}{2}}sqrt(x^{2} + 2x + 4)} - \frac{5x}{2(x^{2} + 2x + 4)^{\frac{3}{2}}sqrt(x^{2} + x + 1)} - \frac{1}{2(x^{2} + x + 1)^{\frac{3}{2}}sqrt(x^{2} + 2x + 4)} - \frac{1}{(x^{2} + 2x + 4)^{\frac{3}{2}}sqrt(x^{2} + x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!