本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{arctan(x + y)}{(1 + ({x}^{3} + {y}^{3})sin(xy))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)}\right)}{dx}\\=&(\frac{-(3x^{2}sin(yx) + x^{3}cos(yx)y + y^{3}cos(yx)y + 0)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}})arctan(x + y) + \frac{(\frac{(1 + 0)}{(1 + (x + y)^{2})})}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)}\\=&\frac{-3x^{2}sin(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{yx^{3}cos(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{y^{4}cos(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} + \frac{1}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)(x^{2} + 2yx + y^{2} + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-3x^{2}sin(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{yx^{3}cos(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{y^{4}cos(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} + \frac{1}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)(x^{2} + 2yx + y^{2} + 1)}\right)}{dx}\\=&-3(\frac{-2(3x^{2}sin(yx) + x^{3}cos(yx)y + y^{3}cos(yx)y + 0)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{3}})x^{2}sin(yx)arctan(x + y) - \frac{3*2xsin(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{3x^{2}cos(yx)yarctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{3x^{2}sin(yx)(\frac{(1 + 0)}{(1 + (x + y)^{2})})}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - (\frac{-2(3x^{2}sin(yx) + x^{3}cos(yx)y + y^{3}cos(yx)y + 0)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{3}})yx^{3}cos(yx)arctan(x + y) - \frac{y*3x^{2}cos(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{yx^{3}*-sin(yx)yarctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{yx^{3}cos(yx)(\frac{(1 + 0)}{(1 + (x + y)^{2})})}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - (\frac{-2(3x^{2}sin(yx) + x^{3}cos(yx)y + y^{3}cos(yx)y + 0)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{3}})y^{4}cos(yx)arctan(x + y) - \frac{y^{4}*-sin(yx)yarctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{y^{4}cos(yx)(\frac{(1 + 0)}{(1 + (x + y)^{2})})}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} + \frac{(\frac{-(3x^{2}sin(yx) + x^{3}cos(yx)y + y^{3}cos(yx)y + 0)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}})}{(x^{2} + 2yx + y^{2} + 1)} + \frac{(\frac{-(2x + 2y + 0 + 0)}{(x^{2} + 2yx + y^{2} + 1)^{2}})}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)}\\=&\frac{18x^{4}sin^{2}(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{3}} + \frac{12yx^{5}sin(yx)cos(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{3}} + \frac{12y^{4}x^{2}sin(yx)cos(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{3}} - \frac{6xsin(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{6yx^{2}cos(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{6x^{2}sin(yx)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}(x^{2} + 2yx + y^{2} + 1)} + \frac{2y^{2}x^{6}cos^{2}(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{3}} + \frac{4y^{5}x^{3}cos^{2}(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{3}} + \frac{y^{2}x^{3}sin(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{2yx^{3}cos(yx)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}(x^{2} + 2yx + y^{2} + 1)} + \frac{2y^{8}cos^{2}(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{3}} + \frac{y^{5}sin(yx)arctan(x + y)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}} - \frac{2y^{4}cos(yx)}{(x^{3}sin(yx) + y^{3}sin(yx) + 1)^{2}(x^{2} + 2yx + y^{2} + 1)} - \frac{2x}{(x^{2} + 2yx + y^{2} + 1)^{2}(x^{3}sin(yx) + y^{3}sin(yx) + 1)} - \frac{2y}{(x^{2} + 2yx + y^{2} + 1)^{2}(x^{3}sin(yx) + y^{3}sin(yx) + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!