本次共计算 1 个题目:每一题对 y 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(xcos(y - 1) - (y - 1)cos(x))}{(1 + sin(x) + sin(y - 1))} 关于 y 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{xcos(y - 1)}{(sin(x) + sin(y - 1) + 1)} - \frac{ycos(x)}{(sin(x) + sin(y - 1) + 1)} + \frac{cos(x)}{(sin(x) + sin(y - 1) + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{xcos(y - 1)}{(sin(x) + sin(y - 1) + 1)} - \frac{ycos(x)}{(sin(x) + sin(y - 1) + 1)} + \frac{cos(x)}{(sin(x) + sin(y - 1) + 1)}\right)}{dy}\\=&(\frac{-(cos(x)*0 + cos(y - 1)(1 + 0) + 0)}{(sin(x) + sin(y - 1) + 1)^{2}})xcos(y - 1) + \frac{x*-sin(y - 1)(1 + 0)}{(sin(x) + sin(y - 1) + 1)} - (\frac{-(cos(x)*0 + cos(y - 1)(1 + 0) + 0)}{(sin(x) + sin(y - 1) + 1)^{2}})ycos(x) - \frac{cos(x)}{(sin(x) + sin(y - 1) + 1)} - \frac{y*-sin(x)*0}{(sin(x) + sin(y - 1) + 1)} + (\frac{-(cos(x)*0 + cos(y - 1)(1 + 0) + 0)}{(sin(x) + sin(y - 1) + 1)^{2}})cos(x) + \frac{-sin(x)*0}{(sin(x) + sin(y - 1) + 1)}\\=&\frac{-xcos^{2}(y - 1)}{(sin(x) + sin(y - 1) + 1)^{2}} - \frac{xsin(y - 1)}{(sin(x) + sin(y - 1) + 1)} + \frac{ycos(y - 1)cos(x)}{(sin(x) + sin(y - 1) + 1)^{2}} - \frac{cos(y - 1)cos(x)}{(sin(x) + sin(y - 1) + 1)^{2}} - \frac{cos(x)}{(sin(x) + sin(y - 1) + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!