本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{({5}^{2} + {(\frac{12(π - x)}{π})}^{2})}^{\frac{1}{2}} + \frac{24sin(\frac{x}{2})}{π} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{-288x}{π} + \frac{144x^{2}}{π^{2}} + 169)^{\frac{1}{2}} + \frac{24sin(\frac{1}{2}x)}{π}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{-288x}{π} + \frac{144x^{2}}{π^{2}} + 169)^{\frac{1}{2}} + \frac{24sin(\frac{1}{2}x)}{π}\right)}{dx}\\=&(\frac{\frac{1}{2}(\frac{-288}{π} + \frac{144*2x}{π^{2}} + 0)}{(\frac{-288x}{π} + \frac{144x^{2}}{π^{2}} + 169)^{\frac{1}{2}}}) + \frac{24cos(\frac{1}{2}x)*\frac{1}{2}}{π}\\=&\frac{144x}{(\frac{-288x}{π} + \frac{144x^{2}}{π^{2}} + 169)^{\frac{1}{2}}π^{2}} - \frac{144}{(\frac{-288x}{π} + \frac{144x^{2}}{π^{2}} + 169)^{\frac{1}{2}}π} + \frac{12cos(\frac{1}{2}x)}{π}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!