本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(({x}^{2} + 16)sqrt({x}^{2} - 4x + 16) + 4{x}^{2} - 32x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(x^{2}sqrt(x^{2} - 4x + 16) + 16sqrt(x^{2} - 4x + 16) + 4x^{2} - 32x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(x^{2}sqrt(x^{2} - 4x + 16) + 16sqrt(x^{2} - 4x + 16) + 4x^{2} - 32x)\right)}{dx}\\=&\frac{(2xsqrt(x^{2} - 4x + 16) + \frac{x^{2}(2x - 4 + 0)*\frac{1}{2}}{(x^{2} - 4x + 16)^{\frac{1}{2}}} + \frac{16(2x - 4 + 0)*\frac{1}{2}}{(x^{2} - 4x + 16)^{\frac{1}{2}}} + 4*2x - 32)*\frac{1}{2}}{(x^{2}sqrt(x^{2} - 4x + 16) + 16sqrt(x^{2} - 4x + 16) + 4x^{2} - 32x)^{\frac{1}{2}}}\\=&\frac{xsqrt(x^{2} - 4x + 16)}{(x^{2}sqrt(x^{2} - 4x + 16) + 16sqrt(x^{2} - 4x + 16) + 4x^{2} - 32x)^{\frac{1}{2}}} + \frac{x^{3}}{2(x^{2} - 4x + 16)^{\frac{1}{2}}(x^{2}sqrt(x^{2} - 4x + 16) + 16sqrt(x^{2} - 4x + 16) + 4x^{2} - 32x)^{\frac{1}{2}}} - \frac{x^{2}}{(x^{2} - 4x + 16)^{\frac{1}{2}}(x^{2}sqrt(x^{2} - 4x + 16) + 16sqrt(x^{2} - 4x + 16) + 4x^{2} - 32x)^{\frac{1}{2}}} + \frac{8x}{(x^{2} - 4x + 16)^{\frac{1}{2}}(x^{2}sqrt(x^{2} - 4x + 16) + 16sqrt(x^{2} - 4x + 16) + 4x^{2} - 32x)^{\frac{1}{2}}} - \frac{16}{(x^{2} - 4x + 16)^{\frac{1}{2}}(x^{2}sqrt(x^{2} - 4x + 16) + 16sqrt(x^{2} - 4x + 16) + 4x^{2} - 32x)^{\frac{1}{2}}} + \frac{4x}{(x^{2}sqrt(x^{2} - 4x + 16) + 16sqrt(x^{2} - 4x + 16) + 4x^{2} - 32x)^{\frac{1}{2}}} - \frac{16}{(x^{2}sqrt(x^{2} - 4x + 16) + 16sqrt(x^{2} - 4x + 16) + 4x^{2} - 32x)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!