本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 - {e}^{(\frac{(-{x}^{2} - {y}^{2})}{4vt})})(-1)x}{({x}^{2} + {y}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x{e}^{(\frac{\frac{-1}{4}x^{2}}{vt} - \frac{\frac{1}{4}y^{2}}{vt})}}{(x^{2} + y^{2})} - \frac{x}{(x^{2} + y^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x{e}^{(\frac{\frac{-1}{4}x^{2}}{vt} - \frac{\frac{1}{4}y^{2}}{vt})}}{(x^{2} + y^{2})} - \frac{x}{(x^{2} + y^{2})}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + y^{2})^{2}})x{e}^{(\frac{\frac{-1}{4}x^{2}}{vt} - \frac{\frac{1}{4}y^{2}}{vt})} + \frac{{e}^{(\frac{\frac{-1}{4}x^{2}}{vt} - \frac{\frac{1}{4}y^{2}}{vt})}}{(x^{2} + y^{2})} + \frac{x({e}^{(\frac{\frac{-1}{4}x^{2}}{vt} - \frac{\frac{1}{4}y^{2}}{vt})}((\frac{\frac{-1}{4}*2x}{vt} + 0)ln(e) + \frac{(\frac{\frac{-1}{4}x^{2}}{vt} - \frac{\frac{1}{4}y^{2}}{vt})(0)}{(e)}))}{(x^{2} + y^{2})} - (\frac{-(2x + 0)}{(x^{2} + y^{2})^{2}})x - \frac{1}{(x^{2} + y^{2})}\\=& - \frac{2x^{2}{e}^{(\frac{\frac{-1}{4}x^{2}}{vt} - \frac{\frac{1}{4}y^{2}}{vt})}}{(x^{2} + y^{2})^{2}} + \frac{{e}^{(\frac{\frac{-1}{4}x^{2}}{vt} - \frac{\frac{1}{4}y^{2}}{vt})}}{(x^{2} + y^{2})} - \frac{x^{2}{e}^{(\frac{\frac{-1}{4}x^{2}}{vt} - \frac{\frac{1}{4}y^{2}}{vt})}}{2(x^{2} + y^{2})vt} + \frac{2x^{2}}{(x^{2} + y^{2})^{2}} - \frac{1}{(x^{2} + y^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!