本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arccos(1 - (\frac{1}{e^{sin(x) - \frac{1}{(1 + x)}}})) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arccos(\frac{-1}{e^{sin(x) - \frac{1}{(x + 1)}}} + 1)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arccos(\frac{-1}{e^{sin(x) - \frac{1}{(x + 1)}}} + 1)\right)}{dx}\\=&(\frac{-(\frac{--e^{sin(x) - \frac{1}{(x + 1)}}(cos(x) - (\frac{-(1 + 0)}{(x + 1)^{2}}))}{e^{{\left(sin(x) - \frac{1}{(x + 1)}\right)}*{2}}} + 0)}{((1 - (\frac{-1}{e^{sin(x) - \frac{1}{(x + 1)}}} + 1)^{2})^{\frac{1}{2}})})\\=&\frac{-cos(x)}{(\frac{-1}{e^{{\left(sin(x) - \frac{1}{(x + 1)}\right)}*{2}}} + \frac{2}{e^{sin(x) - \frac{1}{(x + 1)}}})^{\frac{1}{2}}e^{sin(x) - \frac{1}{(x + 1)}}} - \frac{1}{(\frac{-1}{e^{{\left(sin(x) - \frac{1}{(x + 1)}\right)}*{2}}} + \frac{2}{e^{sin(x) - \frac{1}{(x + 1)}}})^{\frac{1}{2}}(x + 1)^{2}e^{sin(x) - \frac{1}{(x + 1)}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!