本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{\frac{1}{(1 - (\frac{1}{(1 - arcsin(5ln(\frac{1}{1} - x) - sin(arccos({e}^{(5{x}^{\frac{1}{2}})}))))}))}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {e}^{\frac{1}{(\frac{-1}{(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)} + 1)}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{\frac{1}{(\frac{-1}{(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)} + 1)}}\right)}{dx}\\=&({e}^{\frac{1}{(\frac{-1}{(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)} + 1)}}(((\frac{-(-(\frac{-(-(\frac{(\frac{5(-1 + 0)}{(-x + 1)} - cos(arccos({e}^{(5x^{\frac{1}{2}})}))(\frac{-(({e}^{(5x^{\frac{1}{2}})}((\frac{5*\frac{1}{2}}{x^{\frac{1}{2}}})ln(e) + \frac{(5x^{\frac{1}{2}})(0)}{(e)})))}{((1 - ({e}^{(5x^{\frac{1}{2}})})^{2})^{\frac{1}{2}})}))}{((1 - (5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})})))^{2})^{\frac{1}{2}})}) + 0)}{(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)^{2}}) + 0)}{(\frac{-1}{(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)} + 1)^{2}}))ln(e) + \frac{(\frac{1}{(\frac{-1}{(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)} + 1)})(0)}{(e)}))\\=&\frac{-5{e}^{\frac{1}{(\frac{-1}{(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)} + 1)}}}{(\frac{-1}{(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)} + 1)^{2}(10ln(-x + 1)sin(arccos({e}^{(5x^{\frac{1}{2}})})) - 25ln^{2}(-x + 1) - sin^{2}(arccos({e}^{(5x^{\frac{1}{2}})})) + 1)^{\frac{1}{2}}(-x + 1)(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)^{2}} + \frac{5{e}^{(5x^{\frac{1}{2}})}{e}^{\frac{1}{(\frac{-1}{(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)} + 1)}}cos(arccos({e}^{(5x^{\frac{1}{2}})}))}{2(10ln(-x + 1)sin(arccos({e}^{(5x^{\frac{1}{2}})})) - 25ln^{2}(-x + 1) - sin^{2}(arccos({e}^{(5x^{\frac{1}{2}})})) + 1)^{\frac{1}{2}}(\frac{-1}{(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)} + 1)^{2}(-{e}^{(10x^{\frac{1}{2}})} + 1)^{\frac{1}{2}}(-arcsin(5ln(-x + 1) - sin(arccos({e}^{(5x^{\frac{1}{2}})}))) + 1)^{2}x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!