本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{({(740cos(x) + 100sin(x))}^{2} + {(860sin(x) + 100cos(x))}^{2})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (557600cos^{2}(x) + 320000sin(x)cos(x) + 749600sin^{2}(x))^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (557600cos^{2}(x) + 320000sin(x)cos(x) + 749600sin^{2}(x))^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(557600*-2cos(x)sin(x) + 320000cos(x)cos(x) + 320000sin(x)*-sin(x) + 749600*2sin(x)cos(x))}{(557600cos^{2}(x) + 320000sin(x)cos(x) + 749600sin^{2}(x))^{\frac{1}{2}}})\\=&\frac{192000sin(x)cos(x)}{(557600cos^{2}(x) + 320000sin(x)cos(x) + 749600sin^{2}(x))^{\frac{1}{2}}} + \frac{160000cos^{2}(x)}{(557600cos^{2}(x) + 320000sin(x)cos(x) + 749600sin^{2}(x))^{\frac{1}{2}}} - \frac{160000sin^{2}(x)}{(557600cos^{2}(x) + 320000sin(x)cos(x) + 749600sin^{2}(x))^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!