本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{ln(\frac{(1 - x)}{(1 + x)})}^{\frac{1}{3}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln^{\frac{1}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln^{\frac{1}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})\right)}{dx}\\=&\frac{\frac{1}{3}(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))}{ln^{\frac{2}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})}\\=&\frac{x}{3(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})ln^{\frac{2}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})} - \frac{1}{3(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})(x + 1)ln^{\frac{2}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})} - \frac{1}{3(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})ln^{\frac{2}{3}}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!