本次共计算 1 个题目:每一题对 t 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt({(-kvcos(\frac{kvt}{R}) + v)}^{2} + {(kvsin(\frac{kvt}{R}))}^{2}) 关于 t 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(k^{2}v^{2}cos^{2}(\frac{kvt}{R}) - 2kv^{2}cos(\frac{kvt}{R}) + v^{2} + k^{2}v^{2}sin^{2}(\frac{kvt}{R}))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(k^{2}v^{2}cos^{2}(\frac{kvt}{R}) - 2kv^{2}cos(\frac{kvt}{R}) + v^{2} + k^{2}v^{2}sin^{2}(\frac{kvt}{R}))\right)}{dt}\\=&\frac{(\frac{k^{2}v^{2}*-2cos(\frac{kvt}{R})sin(\frac{kvt}{R})kv}{R} - \frac{2kv^{2}*-sin(\frac{kvt}{R})kv}{R} + 0 + \frac{k^{2}v^{2}*2sin(\frac{kvt}{R})cos(\frac{kvt}{R})kv}{R})*\frac{1}{2}}{(k^{2}v^{2}cos^{2}(\frac{kvt}{R}) - 2kv^{2}cos(\frac{kvt}{R}) + v^{2} + k^{2}v^{2}sin^{2}(\frac{kvt}{R}))^{\frac{1}{2}}}\\=&\frac{k^{2}v^{3}sin(\frac{kvt}{R})}{(k^{2}v^{2}cos^{2}(\frac{kvt}{R}) - 2kv^{2}cos(\frac{kvt}{R}) + v^{2} + k^{2}v^{2}sin^{2}(\frac{kvt}{R}))^{\frac{1}{2}}R}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!