数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{x}{((2000a + 3200pix + ax)(b + x))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)}\right)}{dx}\\=&(\frac{-(ab + a*2x + 3200pib + 3200pi*2x + 0 + 2000a)}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}})x + \frac{1}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)}\\=&\frac{-abx}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - \frac{2ax^{2}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - \frac{3200pibx}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - \frac{6400pix^{2}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - \frac{2000ax}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} + \frac{1}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-abx}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - \frac{2ax^{2}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - \frac{3200pibx}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - \frac{6400pix^{2}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - \frac{2000ax}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} + \frac{1}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)}\right)}{dx}\\=&-(\frac{-2(ab + a*2x + 3200pib + 3200pi*2x + 0 + 2000a)}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}})abx - \frac{ab}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - 2(\frac{-2(ab + a*2x + 3200pib + 3200pi*2x + 0 + 2000a)}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}})ax^{2} - \frac{2a*2x}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - 3200(\frac{-2(ab + a*2x + 3200pib + 3200pi*2x + 0 + 2000a)}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}})pibx - \frac{3200pib}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - 6400(\frac{-2(ab + a*2x + 3200pib + 3200pi*2x + 0 + 2000a)}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}})pix^{2} - \frac{6400pi*2x}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} - 2000(\frac{-2(ab + a*2x + 3200pib + 3200pi*2x + 0 + 2000a)}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}})ax - \frac{2000a}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} + (\frac{-(ab + a*2x + 3200pib + 3200pi*2x + 0 + 2000a)}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}})\\=&\frac{2a^{2}b^{2}x}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} + \frac{8a^{2}bx^{2}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} + \frac{12800apib^{2}x}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} + \frac{51200apibx^{2}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} + \frac{8000a^{2}bx}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} - \frac{2ab}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} + \frac{8a^{2}x^{3}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} + \frac{51200apix^{3}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} + \frac{16000a^{2}x^{2}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} - \frac{6ax}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} + \frac{20480000p^{2}i^{2}b^{2}x}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} + \frac{81920000p^{2}i^{2}bx^{2}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} + \frac{25600000apibx}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} - \frac{6400pib}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} + \frac{81920000p^{2}i^{2}x^{3}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} + \frac{51200000apix^{2}}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} - \frac{19200pix}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}} + \frac{8000000a^{2}x}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{3}} - \frac{4000a}{(abx + ax^{2} + 3200pibx + 3200pix^{2} + 2000ab + 2000ax)^{2}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。