本次共计算 1 个题目:每一题对 a 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{d}^{2}(a - 2ac + 2bc + 2a{c}^{2} - 2b{c}^{2} + a{m}^{2}{p}^{2})}{(4{a}^{2} - 4{b}^{2})} 关于 a 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{d^{2}a}{(4a^{2} - 4b^{2})} - \frac{2d^{2}ca}{(4a^{2} - 4b^{2})} + \frac{2d^{2}cb}{(4a^{2} - 4b^{2})} + \frac{2d^{2}c^{2}a}{(4a^{2} - 4b^{2})} - \frac{2d^{2}c^{2}b}{(4a^{2} - 4b^{2})} + \frac{d^{2}m^{2}p^{2}a}{(4a^{2} - 4b^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{d^{2}a}{(4a^{2} - 4b^{2})} - \frac{2d^{2}ca}{(4a^{2} - 4b^{2})} + \frac{2d^{2}cb}{(4a^{2} - 4b^{2})} + \frac{2d^{2}c^{2}a}{(4a^{2} - 4b^{2})} - \frac{2d^{2}c^{2}b}{(4a^{2} - 4b^{2})} + \frac{d^{2}m^{2}p^{2}a}{(4a^{2} - 4b^{2})}\right)}{da}\\=&(\frac{-(4*2a + 0)}{(4a^{2} - 4b^{2})^{2}})d^{2}a + \frac{d^{2}}{(4a^{2} - 4b^{2})} - 2(\frac{-(4*2a + 0)}{(4a^{2} - 4b^{2})^{2}})d^{2}ca - \frac{2d^{2}c}{(4a^{2} - 4b^{2})} + 2(\frac{-(4*2a + 0)}{(4a^{2} - 4b^{2})^{2}})d^{2}cb + 0 + 2(\frac{-(4*2a + 0)}{(4a^{2} - 4b^{2})^{2}})d^{2}c^{2}a + \frac{2d^{2}c^{2}}{(4a^{2} - 4b^{2})} - 2(\frac{-(4*2a + 0)}{(4a^{2} - 4b^{2})^{2}})d^{2}c^{2}b + 0 + (\frac{-(4*2a + 0)}{(4a^{2} - 4b^{2})^{2}})d^{2}m^{2}p^{2}a + \frac{d^{2}m^{2}p^{2}}{(4a^{2} - 4b^{2})}\\=&\frac{-8d^{2}a^{2}}{(4a^{2} - 4b^{2})^{2}} + \frac{16d^{2}ca^{2}}{(4a^{2} - 4b^{2})^{2}} - \frac{16d^{2}cba}{(4a^{2} - 4b^{2})^{2}} - \frac{16d^{2}c^{2}a^{2}}{(4a^{2} - 4b^{2})^{2}} + \frac{16d^{2}c^{2}ba}{(4a^{2} - 4b^{2})^{2}} + \frac{2d^{2}c^{2}}{(4a^{2} - 4b^{2})} - \frac{8d^{2}m^{2}p^{2}a^{2}}{(4a^{2} - 4b^{2})^{2}} - \frac{2d^{2}c}{(4a^{2} - 4b^{2})} + \frac{d^{2}m^{2}p^{2}}{(4a^{2} - 4b^{2})} + \frac{d^{2}}{(4a^{2} - 4b^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!