本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arccos(\frac{5cos(x)}{sqrt(169 + 120sin(x))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arccos(\frac{5cos(x)}{sqrt(120sin(x) + 169)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arccos(\frac{5cos(x)}{sqrt(120sin(x) + 169)})\right)}{dx}\\=&(\frac{-(\frac{5*-sin(x)}{sqrt(120sin(x) + 169)} + \frac{5cos(x)*-(120cos(x) + 0)*\frac{1}{2}}{(120sin(x) + 169)(120sin(x) + 169)^{\frac{1}{2}}})}{((1 - (\frac{5cos(x)}{sqrt(120sin(x) + 169)})^{2})^{\frac{1}{2}})})\\=&\frac{5sin(x)}{(\frac{-25cos^{2}(x)}{sqrt(120sin(x) + 169)^{2}} + 1)^{\frac{1}{2}}sqrt(120sin(x) + 169)} + \frac{300cos^{2}(x)}{(\frac{-25cos^{2}(x)}{sqrt(120sin(x) + 169)^{2}} + 1)^{\frac{1}{2}}(120sin(x) + 169)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!