数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数({{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{({e}^{5}x)}}}^{({tan(x)}^{(xxxx)})}}^{({{tan(x)}^{(xxxx)}}^{{tan(x)}^{(xxxx)}})}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}\right)}{dx}\\=&({{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}((({{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}((({tan(x)}^{x^{4}}((4x^{3})ln(tan(x)) + \frac{(x^{4})(sec^{2}(x)(1))}{(tan(x))})))ln({tan(x)}^{x^{4}}) + \frac{({tan(x)}^{x^{4}})(({tan(x)}^{x^{4}}((4x^{3})ln(tan(x)) + \frac{(x^{4})(sec^{2}(x)(1))}{(tan(x))})))}{({tan(x)}^{x^{4}})})))ln({{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}) + \frac{({{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}})(({{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}((({tan(x)}^{x^{4}}((4x^{3})ln(tan(x)) + \frac{(x^{4})(sec^{2}(x)(1))}{(tan(x))})))ln({{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}) + \frac{({tan(x)}^{x^{4}})(({{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}((({{e}^{x}}^{(xe^{5})}((e^{5} + x*5e^{4}*0)ln({e}^{x}) + \frac{(xe^{5})(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{({e}^{x})})))ln({{{e}^{x}}^{x}}^{{e}^{x}}) + \frac{({{e}^{x}}^{(xe^{5})})(({{{e}^{x}}^{x}}^{{e}^{x}}((({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))ln({{e}^{x}}^{x}) + \frac{({e}^{x})(({{e}^{x}}^{x}((1)ln({e}^{x}) + \frac{(x)(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{({e}^{x})})))}{({{e}^{x}}^{x})})))}{({{{e}^{x}}^{x}}^{{e}^{x}})})))}{({{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}})})))}{({{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}})}))\\=&4x^{3}{tan(x)}^{x^{4}}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}ln(tan(x))ln({{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}})ln({tan(x)}^{x^{4}}) + \frac{x^{4}{tan(x)}^{x^{4}}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}ln({{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}})ln({tan(x)}^{x^{4}})sec^{2}(x)}{tan(x)} + 4x^{3}{tan(x)}^{x^{4}}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}ln({{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}})ln(tan(x)) + \frac{x^{4}{tan(x)}^{x^{4}}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}ln({{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}})sec^{2}(x)}{tan(x)} + 4x^{3}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{tan(x)}^{x^{4}}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}ln(tan(x))ln({{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}) + \frac{x^{4}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{tan(x)}^{x^{4}}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}ln({{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}})sec^{2}(x)}{tan(x)} + {{e}^{x}}^{(xe^{5})}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{tan(x)}^{x^{4}}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}e^{5}ln({{{e}^{x}}^{x}}^{{e}^{x}})ln({e}^{x}) + x{{e}^{x}}^{(xe^{5})}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{tan(x)}^{x^{4}}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}e^{5}ln({{{e}^{x}}^{x}}^{{e}^{x}}) + {tan(x)}^{x^{4}}{{e}^{x}}^{(xe^{5})}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{e}^{x}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}ln({{e}^{x}}^{x}) + {tan(x)}^{x^{4}}{{e}^{x}}^{(xe^{5})}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{e}^{x}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}ln({e}^{x}) + x{{e}^{x}}^{(xe^{5})}{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}{tan(x)}^{x^{4}}{{{{{{e}^{x}}^{x}}^{{e}^{x}}}^{{{e}^{x}}^{(xe^{5})}}}^{{tan(x)}^{x^{4}}}}^{{{tan(x)}^{x^{4}}}^{{tan(x)}^{x^{4}}}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。