数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 o 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数5{o}^{{(2 - 4({o}^{4} - 1))}^{\frac{1}{2}}} 关于 o 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 5{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 5{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}\right)}{do}\\=&5({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))\\=&\frac{-40o^{3}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{5(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-40o^{3}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{5(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o}\right)}{do}\\=&-40(\frac{\frac{-1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{3}{2}}})o^{3}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - \frac{40*3o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{40o^{3}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{40o^{3}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}(o)} + \frac{5(\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}){o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o} + \frac{5(-4o^{4} + 6)^{\frac{1}{2}}*-{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{2}} + \frac{5(-4o^{4} + 6)^{\frac{1}{2}}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))}{o}\\=&\frac{-320o^{6}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{120o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{320o^{6}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)} - 80o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - \frac{80o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{5(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{2}} - 20o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{30{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-320o^{6}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{120o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{320o^{6}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)} - 80o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - \frac{80o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{5(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{2}} - 20o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{30{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{2}}\right)}{do}\\=&-320(\frac{\frac{-3}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{5}{2}}})o^{6}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - \frac{320*6o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{320o^{6}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{320o^{6}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{3}{2}}(o)} - 120(\frac{\frac{-1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{3}{2}}})o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - \frac{120*2o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{120o^{2}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{120o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}(o)} + 320(\frac{-(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{2}})o^{6}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o) + \frac{320*6o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)} + \frac{320o^{6}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln^{2}(o)}{(-4o^{4} + 6)} + \frac{320o^{6}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}*2ln(o)}{(-4o^{4} + 6)(o)} - 80*2o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - 80o^{2}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o) - \frac{80o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(o)} - 80(\frac{\frac{-1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{3}{2}}})o^{2}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{80*2o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{80o^{2}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{5(\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}){o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{2}} - \frac{5(-4o^{4} + 6)^{\frac{1}{2}}*-2{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{3}} - \frac{5(-4o^{4} + 6)^{\frac{1}{2}}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))}{o^{2}} - 20*2o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} - 20o^{2}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)})) + \frac{30*-2{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{3}} + \frac{30({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))}{o^{2}}\\=&\frac{-7680o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{5}{2}}} - \frac{2880o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} + \frac{7680o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)^{2}} + \frac{2880o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)} - \frac{480o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{2560o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{3}(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - 240o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) + \frac{960o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)} + \frac{960o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - 80(-4o^{4} + 6)^{\frac{1}{2}}o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) + \frac{160o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{960o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{3}{2}}} - 180o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{40(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{3}} - \frac{90{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{3}} - \frac{240o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}} - 20(-4o^{4} + 6)^{\frac{1}{2}}o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-7680o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{5}{2}}} - \frac{2880o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} + \frac{7680o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)^{2}} + \frac{2880o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)} - \frac{480o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{2560o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{3}(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - 240o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) + \frac{960o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)} + \frac{960o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - 80(-4o^{4} + 6)^{\frac{1}{2}}o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) + \frac{160o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{960o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{3}{2}}} - 180o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{40(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{3}} - \frac{90{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{3}} - \frac{240o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}} - 20(-4o^{4} + 6)^{\frac{1}{2}}o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}\right)}{do}\\=&-7680(\frac{\frac{-5}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{7}{2}}})o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - \frac{7680*9o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{5}{2}}} - \frac{7680o^{9}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o)}{(-4o^{4} + 6)^{\frac{5}{2}}} - \frac{7680o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{5}{2}}(o)} - 2880(\frac{\frac{-3}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{5}{2}}})o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - \frac{2880*5o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{2880o^{5}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{2880o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{3}{2}}(o)} + 7680(\frac{-2(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{3}})o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o) + \frac{7680*9o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)^{2}} + \frac{7680o^{9}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln^{2}(o)}{(-4o^{4} + 6)^{2}} + \frac{7680o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}*2ln(o)}{(-4o^{4} + 6)^{2}(o)} + 2880(\frac{-(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{2}})o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o) + \frac{2880*5o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)} + \frac{2880o^{5}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln^{2}(o)}{(-4o^{4} + 6)} + \frac{2880o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}*2ln(o)}{(-4o^{4} + 6)(o)} - 480(\frac{\frac{-1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{3}{2}}})o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - \frac{480{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{480o({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{480o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}(o)} - 2560(\frac{\frac{-3}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{5}{2}}})o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{3}(o) - \frac{2560*9o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{3}(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{2560o^{9}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln^{3}(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{2560o^{9}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}*3ln^{2}(o)}{(-4o^{4} + 6)^{\frac{3}{2}}(o)} - 240{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - 240o({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o) - \frac{240o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(o)} + 960(\frac{-(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{2}})o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) + \frac{960*5o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)} + \frac{960o^{5}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o)}{(-4o^{4} + 6)} + \frac{960o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)(o)} + 960(\frac{\frac{-1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{3}{2}}})o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o) + \frac{960*5o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{960o^{5}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln^{2}(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{960o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}*2ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}(o)} - 80(\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}})o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - 80(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - 80(-4o^{4} + 6)^{\frac{1}{2}}o({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o) - \frac{80(-4o^{4} + 6)^{\frac{1}{2}}o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(o)} + 160(\frac{\frac{-1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{3}{2}}})o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) + \frac{160*5o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{160o^{5}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{160o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}(o)} - 960(\frac{\frac{-3}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{5}{2}}})o^{5}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{960*5o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{960o^{5}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))}{(-4o^{4} + 6)^{\frac{3}{2}}} - 180{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} - 180o({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)})) + \frac{40(\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}){o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{3}} + \frac{40(-4o^{4} + 6)^{\frac{1}{2}}*-3{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{4}} + \frac{40(-4o^{4} + 6)^{\frac{1}{2}}({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))}{o^{3}} - \frac{90*-3{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{4}} - \frac{90({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))}{o^{3}} - 240(\frac{\frac{-1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{3}{2}}})o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{240{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{240o({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))}{(-4o^{4} + 6)^{\frac{1}{2}}} - 20(\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}})o{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} - 20(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} - 20(-4o^{4} + 6)^{\frac{1}{2}}o({o}^{(-4o^{4} + 6)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(-4*4o^{3} + 0)}{(-4o^{4} + 6)^{\frac{1}{2}}}))ln(o) + \frac{((-4o^{4} + 6)^{\frac{1}{2}})(1)}{(o)}))\\=&\frac{-307200o^{12}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{7}{2}}} - \frac{138240o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{5}{2}}} + \frac{307200o^{12}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)^{3}} + \frac{138240o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)^{2}} - \frac{18240o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} + \frac{18240o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)} - \frac{46080o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{3}(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} + \frac{9600o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)} - \frac{122880o^{12}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{3}(o)}{(-4o^{4} + 6)^{\frac{5}{2}}} + \frac{30720o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{2}} + \frac{20480o^{12}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{4}(o)}{(-4o^{4} + 6)^{2}} + \frac{240{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{10240o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{3}(o)}{(-4o^{4} + 6)} + 1600o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o) - 320(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) + \frac{9600o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{5760o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{1280o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln^{2}(o)}{(-4o^{4} + 6)} - 1520{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - 940{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{1280o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o)}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{30720o^{8}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{5}{2}}} - \frac{9600o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{3}{2}}} - \frac{1040{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}} + 640o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}ln(o) - 280(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}} + \frac{320o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{(-4o^{4} + 6)^{\frac{1}{2}}} - \frac{210(-4o^{4} + 6)^{\frac{1}{2}}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{4}} + \frac{510{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}}{o^{4}} + 80o^{4}{o}^{(-4o^{4} + 6)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。