本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{hh}{(sin(x)sin(x))} - hh) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{h^{2}}{sin^{2}(x)} - h^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{h^{2}}{sin^{2}(x)} - h^{2})\right)}{dx}\\=&\frac{(\frac{h^{2}*-2cos(x)}{sin^{3}(x)} + 0)*\frac{1}{2}}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}}\\=&\frac{-h^{2}cos(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{3}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-h^{2}cos(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{3}(x)}\right)}{dx}\\=&\frac{-(\frac{\frac{-1}{2}(\frac{h^{2}*-2cos(x)}{sin^{3}(x)} + 0)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{3}{2}}})h^{2}cos(x)}{sin^{3}(x)} - \frac{h^{2}*-3cos(x)cos(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{4}(x)} - \frac{h^{2}*-sin(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{3}(x)}\\=&\frac{-h^{4}cos^{2}(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{3}{2}}sin^{6}(x)} + \frac{3h^{2}cos^{2}(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{4}(x)} + \frac{h^{2}}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{2}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!