本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(sqrt(\frac{{e}^{(4x)}}{({e}^{(4x)} + 1)})) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(sqrt(\frac{{e}^{(4x)}}{({e}^{(4x)} + 1)}))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(sqrt(\frac{{e}^{(4x)}}{({e}^{(4x)} + 1)}))\right)}{dx}\\=&\frac{((\frac{-(({e}^{(4x)}((4)ln(e) + \frac{(4x)(0)}{(e)})) + 0)}{({e}^{(4x)} + 1)^{2}}){e}^{(4x)} + \frac{({e}^{(4x)}((4)ln(e) + \frac{(4x)(0)}{(e)}))}{({e}^{(4x)} + 1)})*\frac{1}{2}}{(sqrt(\frac{{e}^{(4x)}}{({e}^{(4x)} + 1)}))(\frac{{e}^{(4x)}}{({e}^{(4x)} + 1)})^{\frac{1}{2}}}\\=&\frac{-2{e}^{(6x)}}{({e}^{(4x)} + 1)^{\frac{3}{2}}sqrt(\frac{{e}^{(4x)}}{({e}^{(4x)} + 1)})} + \frac{2{e}^{(2x)}}{({e}^{(4x)} + 1)^{\frac{1}{2}}sqrt(\frac{{e}^{(4x)}}{({e}^{(4x)} + 1)})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!