本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{(4 - x)}{(4 + x)}) + ({x}^{2} + 2)sin(x) + 2 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)}) + x^{2}sin(x) + 2sin(x) + 2\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)}) + x^{2}sin(x) + 2sin(x) + 2\right)}{dx}\\=&\frac{(-(\frac{-(1 + 0)}{(x + 4)^{2}})x - \frac{1}{(x + 4)} + 4(\frac{-(1 + 0)}{(x + 4)^{2}}))}{(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)})} + 2xsin(x) + x^{2}cos(x) + 2cos(x) + 0\\=&\frac{x}{(x + 4)^{2}(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)})} - \frac{4}{(x + 4)^{2}(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)})} - \frac{1}{(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)})(x + 4)} + 2xsin(x) + x^{2}cos(x) + 2cos(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!